

Data, Cloud Application & Resource
Modelling

Modelling and Orchestrating heterogeneous
Resources and Polymorphic applications for
Holistic Execution and adaptation of Models
In the Cloud

Executive summary

The modelling of a polymorphic application is a pre-requisite for its
suitable management. Such a modelling bares its own particularities
and requirements that must be met. In particular, it needs to cover all
domains and metadata related to multi-cloud, polymorphic
application management. Such domains include the application’s
deployment topology, its own requirements as well as its
measurement. While the management goals and activities include not
only application monitoring but also reactive and proactive
application adaptation.
Morphemic seeks to re-use modelling artifacts from the Melodic
platform, developed by the Melodic project, to not create everything
from scratch and save the respective effort and time. In this respect,
CAMEL as the modelling language and the metadata schema (MDS)
for metadata annotations have been selected to satisfy this goal.
CAMEL is already a rich cloud application modelling language.
However, it lacks the necessary elements to enable the modelling of
polymorphic applications, such as the coverage of all kinds of
component configurations and the mapping of those configurations to
corresponding requirements. To this end, the work conducted in this
deliverable made it possible to extend CAMEL in order to support
polymorphic application modelling by enhancing it towards
particularly focused application management aspects.
MDS is a rich metadata schema covering essential aspects related to
application deployment and big data management. However, it lacks
conceptual elements related to additional kinds of resources like HPC
and network ones as well as hardware accelerated ones. As such, the
work conducted in this deliverable took care of extending MDS to
suitably cover also such elements at the conceptual level.
This deliverable not only explains what were the enhancements made
to CAMEL and MDS but also explicates why they have been
performed while it also supplies both implementation details as well
as a modelling example showcasing how CAMEL and MDS can be
exploited to support the specification of a polymorphic use-case
application. This proves that polymorphic application modelling is
supported in Morphemic through the CAMEL and MDS frameworks
and can be improved in the near future through exploiting relevant
(evaluation) feedback so as to produce the final forms of both
CAMEL and MDS extended versions.
This deliverable can be studied by both technical and use-case
partners in Morphemic for realising the Morphemic Preprocessor as
well as specifying the corresponding use-cases. It can be also
advocated by an external audience that investigates the use of
CAMEL and MDS for supporting polymorphic application modelling
and subsequently management.

H2020-ICT-2018-2020
Leadership in Enabling and Industrial
Technologies: Information and
Communication Technologies

Grant Agreement Number
871643

Duration
1 January 2020 –
31 December 2022

www.morphemic.cloud

Deliverable reference
D1.1

Date
31 December 2020

Responsible partner
FORTH

Editor(s)
Kyriakos Kritikos

Reviewers
Paweł Skrzypek, Sebastian Geller, Robert
Gdowski

Distribution
Public

Availability
www.morphemic.cloud

Author(s)
Kais Chaabouni, Maxime Compastié, Robert Gdowski, Kyriakos Kritikos, Andreas Tsagaropoulos, Yiannis
Verginadis, Ioannis Patiniotakis

D1.1 Data, Cloud Application & Resource Modelling

Page 2

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 871643

D1.1 Data, Cloud Application & Resource Modelling

Page 3

Table of Contents
1 Introduction .. 4

1.1 Scope ... 4
1.2 Intended Audience ... 5
1.3 Document Structure ... 5

2 State-of-the-Art Analysis .. 5
2.1 Cloud Application Modelling Languages ... 6
2.2 Ontologies and Metadata for Cloud Application & Services Description .. 8

2.2.1 Network Ontologies, Meta-Models and Languages .. 8
2.2.2 Accelerated Resource & HPC Ontologies, Meta-Models and Languages .. 9

3 CAMEL Extensions .. 10
3.1 Conceptual Analysis .. 10

3.1.1 CAMEL Extension Requirements .. 10
3.1.2 CAMEL Enhancement Process & Exploitation Flow ... 13
3.1.3 CAMEL Version 3.0 ... 15

3.2 Language Implementation .. 30
4 Metadata Schema Extensions .. 31

4.1 Conceptual Analysis .. 31
4.1.1 Processing ... 32
4.1.2 Network .. 37
4.1.3 PaaS .. 40
4.1.4 Big Data .. 42

4.2 Implementation .. 47
5 Use-Case Modelling ... 47
6 Conclusions & Future Work ... 50
7 References .. 52
Appendix I .. 54

D1.1 Data, Cloud Application & Resource Modelling

Page 4

1 Introduction

1.1 Scope
Polymorphic applications are applications that can have alternative architecture variants, derived from the fact that the
application components can have different forms (e.g., function or micro-service) or configuration classes (container,
VM, serverless). As such, each architecture variant maps to the selection of one form of each component from those
possible. Thus, depending on the respective application requirements (e.g., to cater for a particular customer class),
one architecture variant from those available can be selected and deployed in one or across multiple clouds. As such,
the main research issues here are: (a) how to automatically select and deploy the right application architecture variant
(e.g., choose the most cost-effective variant due to budget restrictions) as well as (b) how to adapt both the application
architecture variant and configuration according to the current application requirements and context (e.g., migrate to
second optimal variant as the first one always leads to Service Level Objective (SLO) violations). For the second
issue, it is also quite interesting to support both the reactive and proactive application adaptation. Reactive adaptation
relies on sensing problematic situations like SLO violations and reacting upon them to enable the application to still
deliver a specific service level. On the other hand, proactive adaptation relies on predicting such problematic
situations, where such a prediction can rely on the development and use of techniques for application quality and
deployment utility prediction. The added-value of this latter adaptation form is that it copes with a problem before its
actual appearance, thus attempting to either completely address it or restrain its impact to the possible minimum. The
benefits of addressing these two research issues are considerable: the application deployment is always optimally
satisfying the current application requirements and context, leading to the reliable delivery of service levels, the
increase of the application and its provider reputation and the subsequent increase of the provider’s net gain. As such,
polymorphic applications tend to change the research map of multi-cloud application management [1] by supplying
more opportunities for true application (deployment) optimisation through the runtime change of the application
architecture (or form) apart from the modification of the kinds and quantities of the resources used.
Based on the above analysis, the Morphemic project aims at advancing the state-of-the-art by providing proper support
to polymorphic application management. A major pre-requisite for supporting this management kind is polymorphic
application modelling. Without the proper modelling of polymorphic applications, their optimal deployment and
reconfiguration cannot be supported by any cloud (application) management platform. Such a modelling not only
needs to be rich enough but also deeply cover all necessary management domains, including application deployment,
requirements and monitoring.
In order to reach its aforementioned ambitious goal, Morphemic has decided to re-use solutions and tools from the
Melodic project. In particular, the Morphemic project aims at producing Morphemic Preprocessor, an extension to the
Melodic platform that can enable it to support both polymorphic and proactive adaptation as well as supply self-
healing capabilities. For convenience reasons, the result of integrating Morphemic Preprocessor with the Melodic
platform is called the Morphemic platform within the Morphemic project, which looks a more typical outcome of an
equally-named project.
The re-use of Melodic solutions and tools by Morphemic also holds for the case of the application modelling feature.
In particular, to not reinvent the wheel and increase the respective effort and time, Morphemic has decided to re-use
the Cloud Application Modelling and Execution Language (CAMEL) [2] and the MetaData Schema (MDS) [3].
CAMEL is a rich modelling language covering all necessary domains for multi-cloud application management, such
as the ones mentioned above. However, it currently lacks the necessary conceptual capabilities to support the
specification of polymorphic applications as it is not able to model all possible application component forms and
configurations while it is missing also network-related concepts and relationships. To this end, the work conducted in
the context of this deliverable focused on extending CAMEL in a minimal but sufficient manner to deliver the missing
polymorphic application modelling capabilities.
MDS is also a rich metadata schema covering concepts and their relationships across the application deployment, big
data management and contextual security domains. As such, it includes concepts and properties related to where (big
data) applications should be placed, how big data can be actually managed and how access to both data and resources
(including application components) can be restricted. Such a schema is quite handy in the context of extending
CAMEL at the model level as well as supplying suitable annotations for CAMEL elements at the same level. In this
way, CAMEL is actually enhanced to describe additional features or domains (e.g., requirements for resources like
Virtual Machines (VMs) and Graphical Processing Units (GPUs)) without the need to extend it at the conceptual level.
However, after carefully examining the application deployment domain, MDS has been found to lack some important
concepts related to missing resource kinds (e.g., High-Performance Computing (HPC), hardware-accelerated ones),
platform kinds (e.g., serverless) and network elements. Further, some small gaps (e.g., missing trusted execution

D1.1 Data, Cloud Application & Resource Modelling

Page 5

environment concepts) were also identified in terms of the other two domains (i.e., big data management and
contextual security). As such, in the context of supporting polymorphic application modelling and annotation, MDS
has been also extended to cover all missing conceptual elements.
All the aforementioned modelling extensions have been already implemented and are explicated in this deliverable.
This research and development work pertains mainly to work-package WP1 of the Morphemic project and tasks T1.1
& T1.2 related to polymorphic application modelling with CAMEL and metadata modelling, respectively. The
succession of D1.1 is D1.3, titled as “Final Data, Cloud Application and Resource Modelling”, where improvements
on both CAMEL and MDS extensions will be incorporated based on the feedback given by use-case and technical
project partners.
This modelling-related work impacts all research and development tasks in the project based on the already explained
rationale that the modelling is a pre-requisite for successful application management. In essence, any kind of
modelling feature, if decided to be supported, has to be reflected in the corresponding platform, i.e., the Morphemic
one. It should be stressed here that it is not expected that all modelling features will be realised in the Morphemic
platform due to resource restrictions pertaining to this project. In essence, the modelling features will be prioritised
based on the respective platform requirements that they map to (see Deliverable D6.1 [4]). As such, modelling
features with high priority will be surely realised in the Morphemic platform while features with lower priority might
or might not be realised. However, in any case and as section 1.2 indicates, all modelling features are relevant for
adoption by an external audience, which could be related to, e.g., providers of other cloud management platforms that
desire to adopt CAMEL in order to support polymorphic application modelling and management.
Based on the aforementioned impact of the modelling extensions on the project’s research and development tasks, the
affected work-packages in the project are WP2-WP5. We should further highlight that the extension of CAMEL and
MDS is tightly related to task T5.1, User Interfaces, where a new CAMEL graphical editor will be designed, named as
CAMEL Designer. Finally, in the context of use-case definition and preparation, i.e., deliverable D6.3 “Use Cases
Definition and Preparation”, the aforementioned work is relevant in terms of the actual modelling of the use-cases of
the project.

1.2 Intended Audience
The content of this deliverable should firstly interest the use-case owners of the project who aim at properly modelling
their multi-cloud, polymorphic applications. Such a modelling can be conducted cooperatively between business
experts and devops within the use-case organisation. This content should also interest the technical partners of the
project (researchers, architects and developers) who need to rely on CAMEL and MDS features in order to design and
implement relevant (and in many cases innovative) features of the Morphemic Preprocessor. This deliverable is public
so it is also open to external audience (where the respective roles are the same as those mentioned for the internal
audience). Similarly to the case of the internal audience, the interested organisations in terms of the content of this
deliverable can be those that aim to exploit CAMEL and MDS to describe their applications and potentially exploit the
Morphemic platform to deploy them as well as those that target further enhancing an existing platform with features
that are relevant to CAMEL and MDS and polymorphic application management in general.

1.3 Document Structure
The remaining part of this document has been structured as follows:

• Chapter 2 conducts a state-of-the-art analysis related to cloud application, cloud resource and big data
modelling, covering relevant languages, ontologies and metadata schemata.

• Chapter 3 explicates the new version of the enhanced CAMEL language (3.0) along with the changes that
have been performed on its previous version (2.0). It also supplies respective implementation details.

• Chapter 4 explicates all MDS extensions while it details the way they have been realised.
• Chapter 5 utilises a use-case from the Morphemic project in order to highlight how CAMEL and MDS jointly

enable the complete modelling of a polymorphic application.
• Chapter 6 concludes this document and supplies particular directions for future work related to polymorphic

application modelling.

2 State-of-the-Art Analysis

The goal of this section is twofold:
• On one hand, in section 2.1, it attempts to assess whether the current cloud application modelling languages

support both multi-cloud and polymorphic application modelling. Its main goal is to highlight that only

D1.1 Data, Cloud Application & Resource Modelling

Page 6

CAMEL covers well the modelling of multi-cloud applications and that it already includes some conceptual
elements that are necessary for polymorphic application modelling. As such, the Morphemic consortium has
taken the right decision to adopt this language and extend it so as to provide support to the latter modelling
kind.

• On the other hand, section 2.2 reviews the state-of-the-art in cloud application and services description. Its
main goal is to unveil all those modelling approaches that have been consulted in order to extend accordingly
MDS so as to provide a better and more complete coverage of resource (including network) and platform
kinds. The main outcome is that due to this consulting and the proper MDS extension, this extension seems to
advance the state-of-the-art in these modelling domains by providing a deeper and more extensive taxonomy
of relevant concepts and properties. However, a more thorough evaluation for proving such an advancement is
considered out of scope of this deliverable but could be part of a future publication, within the context of this
project, focusing on analysing the MDS extension.

2.1 Cloud Application Modelling Languages
In order to assess all relevant cloud application and service modelling languages that have been developed and
proposed in the past, we rely on the criteria framework in [2] that we extend in order to also cover the polymorphic
modelling aspect. The criteria framework includes the following evaluation criteria, which focus on how well all
relevant modelling domains are covered and integrated, which kind of cloud services are supported and whether the
models@runtime paradigm is adopted:

• domain coverage: which domains from those relevant to the application lifecycle are covered by a language
• integration level: what is the level of integration [2] between the different domains/sub-languages

covered/utilised by a language
• delivery model support: which kinds of cloud services are supported by a language
• models@runtime support: for which domains is the models@runtime paradigm [5] adopted by a language

In our view and based on the requirements given in section 3.1.1, a cloud language can support polymorphic
application modelling when it is able to satisfy the following additional criteria:

• application architecture variability: the language is able to capture different forms of application components
and thus cover subsequently the different variations that an application architecture can have.

• component configuration variability: the language is able to capture any kind of configuration that a
component might have. This should include script, container, cluster, serverless, PaaS and accelerated
resource configurations. Thus, the higher is the number of the different configuration kinds captured, the
better is the language

• component complexity: application components in one form can be standalone and in another form should be
split into other components, thus being complex in nature. This indicates the need for a language to support
the specification of both single and complex components, where the latter can be realised through a
composition of other components of smaller complexity.

Based on the above, enhanced criteria framework, we have analysed 12 cloud application / service modelling
languages, including CAMEL. These languages are those assessed also in [2] and represent the state-of-the-art in
terms of cloud application modelling languages which are not provider-specific. As provider-independence is a crucial
characteristic in order to support cross- and multi-cloud deployments. The evaluation results are depicted in Table 1.
These results map to those that have been already produced for the first 4 evaluation criteria in [2] and have been
extended through the assessment of the 3 polymorphic-modelling related criteria. The latter criteria have been
assessed as follows:

• application architecture variability: if a language does not support at all the modelling of component forms, it
has a “Low” evaluation value. If it indirectly supports multiple component forms, it has a “Medium”
evaluation value. Otherwise, it has a “High” evaluation value.

• component configuration variability: if a language supports one or two configuration kinds, it has a “Low”
evaluation value. If it supports three to four kinds, it has a “Medium” evaluation value. Otherwise, it has a
“High” evaluation value.

• component complexity: if a language does not make explicit the distinction of single and complex
components, it has a “Low” evaluation value. If a language makes this distinction but not properly model
complex components, it has a “Medium” evaluation value. Otherwise, if the language also properly and
complete models composite components as agglomerations of other components, it has a “High” evaluation
value.

D1.1 Data, Cloud Application & Resource Modelling

Page 7

Table 1 - Evaluation of Cloud Application Modelling Languages

Language Domain
Coverag
e

Integratio
n Level

Deliver
y Model
Support

Models@runtim
e Support

App. Arch.
Variability

Comp.
Conf.
Variabilit
y

Comp.
Complexit
y

Reservoir OVF
Extension [6]

Low N/A IaaS N/A Low Low Low

Optimis OVF
Extension [7]

Medium N/A IaaS N/A Low Low Low

Vamp [8] Low N/A IaaS N/A Low Low Low
4CaaSt
Blueprint
Template [9]

Low N/A IaaS,
PaaS

N/A Low Low Low

TOSCA [10] Medium Medium IaaS,
PaaS

Deployment* Low Medium Low

Provider DSL
[11]

Low Medium IaaS N/A Low Medium Low

GENTL [12] Low N/A IaaS N/A Low Low Low
ModaCloudML
[13]

Medium Low IaaS,
PaaS

Deployment Low Medium Medium

CAML [14] Medium Medium IaaS N/A Low Low Low
Arcadia Context
Model [15]

High Medium IaaS Deployment Low Medium Low

StratusML [16] Medium High IaaS Deployment Low Low Low
HCL/Terraform
1

Low N/A IaaS,
PaaS

N/A Low Medium Low

CAMEL 2.0 High High IaaS,
PaaS,
SaaS**

Deployment,
Metric, Data

Medium**
*

Medium Medium

CAMEL 3.0 High High IaaS,
PaaS,
SaaS**

Deployment,
Metric, Data

Medium High High

*: TOSCA [10] has a respective interest group which works on extending TOSCA to include the coverage of the
instance level at the deployment domain but the respective outcome is not yet part of the standard.
**: CAMEL has a version equivalent to CAMEL 2.0 which includes support for the SaaS level - conducted in the
context of the CloudSocket project [17]
***: CAMEL 2.0 was mapping a component to multiple configurations but only one configuration per component was
always supported (and has been realised in the current version of the Melodic platform).

As it can be seen from the above table, CAMEL 2.0 was already above competition in terms of its domain coverage,
integration level, cloud service type coverage and the models@runtime support. This is due to the following reasons:
(a) it supports the models@runtime paradigm in both the deployment, monitoring and data domains; (b) it has tightly
integrated the right set of homogeneous DSLs; (c) it covers the PaaS & SaaS levels apart from the IaaS one; (d) it
covers with the appropriate expressiveness level all the relevant domains to the cloud application management
lifecycle. CAMEL 3.0, the new extension of CAMEL, builds on CAMEL 2.0 in order to enhance it with the
polymorphic modelling feature. In this sense, Morphemic has developed an enhancement of an existing language and
its respective modelling framework that does provide support for polymorphic application modelling, which is a pre-
requisite for polymorphic application deployment and adaptive provisioning. In the next chapter, this new version of
CAMEL will be detailed in order to completely comprehend how it enables the full specification of polymorphic
applications in terms of all relevant application lifecycle management aspects.

1 https://www.terraform.io/docs/configuration/syntax.html

D1.1 Data, Cloud Application & Resource Modelling

Page 8

2.2 Ontologies and Metadata for Cloud Application & Services Description
As the MDS already covers well the big data domain as well as supplies adequate support for common resource types
and services, the focus of the analysis is mainly on the network and hardware-accelerator domains mapping to the two
most significant extensions of MDS. For the interested reader, a review of the state-of-the-art in big data and
application placement domains can be found in [18].
2.2.1 Network Ontologies, Meta-Models and Languages
The authors in [19] suggest a meta-model for cyber-physical systems that mainly focuses in their communication. The
meta-model was produced by first considering and analysing concepts from computing in civil engineering and then
determining those to be included by covering both communication-related properties and system components relevant
to communication. It was utilised for validation purposes in the modelling of a prototype cyber-physical system
related to Building Information Modelling (BIM) and physically implemented in the laboratory.
The technical report in [20] proposes an ontology for computer network categorization aiming to assist in the
development of knowledge-base systems for network management. Such systems take the form of a logical reasoner
able to provide automation support for management tasks typically realised by human experts. The ontology strictly
covers the network domain and especially includes concepts to represent network entities and protocols while also
catering for capturing relevant relationships between them as well as their functioning mechanisms.
In [21] the authors study the way to intelligently and efficiently refine and manage a vast amount of network
monitoring data sources and come up with a specific solution relying on the use of AI reasoning along with an
intuitive user interface. This solution attempts to minimise the user interaction and required knowledge during the
network monitoring search process by refining the displayed information based on the user choices. It relies on the use
of an ontology for realising a knowledge base of multiple different information aspects like the Internal Management
structure, the data sources physical location and network switches.
The network description language NDML+ is presented in [22], which is an extension of NDML (Network Design
Markup Language) to cover additional aspects like Traffic mapping, Costs and Geometry analysis as well as to make
its design more uniform (in terms of underpinning modelling technologies). This new language has been developed in
the context of the CANDY project to support the computer-aided design of networks through the framework produced
by that project.
The ToCo (TOuCan Ontology) ontology [23] has been produced in the context of the EPSRC TOUCAN project
(Grant No. EP/L020009/1). Such an ontology is able to specify the physical infrastructure as well as the quality of
channel, services and users in heterogeneous telecommunication networks spanning multiple domains. At the top-
level, the ontology relies on the Device-Interface-Link pattern which is then specialised in more specific concepts and
relationships resulting in a very rich telecommunication networks ontology.
The CNMO (Communications Network Modelling Ontology) ontology [24] is able to specify network models that
cover multiple aspects related to network development and operations. This ontology covers concepts and aspects like
nodes, links, traffic sources and protocols. It has been developed using terminologies and concepts from various
network modelling, simulation and topology generation tools.
In [25] the OpenMobileNetwork Resource Description Framework (RDF) dataset for mobile networks and devices is
presented, able to describe mobile networks, their structure and topology. This dataset has been constructed from RDF
databases like OpenCellID and OpenBMap and has been enriched by exploiting live context semantic data extracted
from smartphones or WiFi (Wireless Fidelity) access points. Such a dataset can then be utilized along with interlinked
information present in the LOD Cloud in order to realise applications that depend on mobile network and positioning
data like semantic location-based services.
The thesis by J. J. van der Ham [26] covers the specification of a network description language that specialises in the
description of network topologies for hybrid networks (above the physical layer). This language enables the
generation and exchange of network maps so as to allow the automatic correlation of information across domains. In
addition, it enables end-users to specify light-path reservation requests while facilitates services providers in terms of
validating the feasibility of these requests. Finally, the author claims that their semantic model attains a better trade-off
between expressivity and usability with respect to other related languages while it inherits all the benefits from the
introduction of semantics.
The paper in [27] suggests a practical domain ontology modelling approach for telecommunication services that
enhances the reusability of relevant conceptual domains and greatly reduces the main technical obstacles in domain
ontology modelling. Based on this approach, a rich telecommunication ontology has been developed which enables to
precisely specify telecommunication services, to easily discover them as well as address the semantic interoperability
problem. The ontology modelling covers multiple layers which cover common, domain and application-specific
ontology modules. The latter include the Terminal Capability Ontology, the Network Ontology, the Service Role
Ontology, the Charging Ontology, the Service Quality Ontology and the Service Category Ontology.

D1.1 Data, Cloud Application & Resource Modelling

Page 9

The Web Ontology Language (OWL)-based ontology in [28] covers the network domain, which is approached from
various perspectives, including topology, protocols, security, hardware and performance. The ontology seems to be
quite deep while it introduces various relations between the modelled concepts. However, the features/attributes of
these concepts are scarcely considered.
By examining all the above work, one can understand that there is great variation in terms of network sub-domains
coverage, richness, deepness and cloud-relatedness. Further, while not being the goal to achieve and prove in this
deliverable, the network extension of MDS could be considered as superior to that work by scoring higher in all these
dimensions. This could be regarded as the main outcome of selecting and integrating the best and most relevant parts
from each work in the state-of-the-art and structuring them accordingly in the right place within the MDS. Further, it
should be stressed that in contrast to the aforementioned and analysed work, MDS does cover multiple cloud-related
network elements, making it up-to-the-target with respect to its main application goal, which relates to facilitating the
semantic annotation of multi-cloud application models specified in CAMEL.
2.2.2 Accelerated Resource & HPC Ontologies, Meta-Models and Languages
The work in [29] extends the mOSAIC ontology, pillar of the IEEE 2302 — Standard for Intercloud Interoperability
and Federation, towards the creation of an ontology named as CloudLightning (CL-Ontology). This ontology
facilitates the incorporation of heterogeneous resources and HPC environments in the Cloud. In particular, it provides
support for resource management by modelling specific hardware accelerators as well as different resource abstraction
methods like virtual machines and containers, by matching service requests to specific heterogeneous infrastructures,
and by enabling intelligent resource discovery.
The HPCRO ontology is proposed in [30] covering concepts related to both hardware and software resources as well
as relevant properties and relations between them. It also suggests the Wordnet-based Quick Resource Index List
(WQRIL) method that supports the efficient, semantics-based, fuzzy discovery of HPC resources.
The work in [31] proposes a modular and extensible XML-based platform language called XPDL, which specializes
on the description of heterogeneous multicore systems and clusters. The specifications conforming to XPDL mainly
supply information about the hardware and installed systems software in a platform which is relevant for the
optimisation of application programs and systems settings targeting improved performance and energy efficiency.
They can also become distributed by relying on the use of hyperlinks to reference one part from the other. Apart from
the language itself, a toolchain is suggested, able to edit XPDL specifications as well as to produce driver code for
microbenchmaking to explore empirical performance and energy models at deployment time.
MARTE (OMG adopted specification) [32] is used for the description of hardware architectures. It includes various
meta-models but the most relevant ones in the context of this analysis are the General Resource Model (GRM) and the
Hardware Resource Model (HRM) meta-models. The GRM meta-model covers the description of various resource
types like storage, communication, timing, synch, concurrency, computing and device. On the other hand, the HRM
meta-model spans two views: the logical that classifies each hardware resource according to its functional properties
while covering various concrete resources of multiple resource types (e.g., computing or communication) and the
physical view focusing on the physical properties of resources.
The work in [33] suggests a novel SoC co-design methodology based on MDE and MARTE which enables to raise the
abstraction level and model fine-grain reconfigurable architectures, such as FPGAs. To this end, to achieve the latter
goal, the authors have extended MARTE to cover some specific features of FPGAs. In particular, the HwProcessor
stereotype has been enhanced in order to cover the implementation technology of an FPGA, which could be hardcore
or softcore IP. Further, the HwComponent concept has been extended to include the areatype attribute. This enables to
indicate, especially for Partial Dynamic Reconfiguration components, whether their respective regions are static or
dynamically reconfigurable.
The above work also varies in terms of the criteria introduced in section 2.2.1 (i.e., sub-domains coverage, richness,
deepness and cloud-relatedness) as well as the standards support one, which we consider as important in the context
of the current domain, i.e., the cloud one. The main outcome of inspecting this work is that we have produced an MDS
extension by selecting and integrating the best and most relevant parts of that work and properly structuring them in
the right place within the MDS. This outcome relates to an extension of the MARTE standard with additional concepts
and properties that enable to cover well the HPC, FPGA and GPU sub-domains (of the resource domain). It is also
possible that this outcome, when compared to the related work, could be considered as superior. However, it is not the
goal of this deliverable as well as the goal of this project to produce a very rich MDS model that advances the state-of-
the-art. The goal is rather to extend MDS in order to properly support the annotation of polymorphic multi-cloud
application models in CAMEL.

D1.1 Data, Cloud Application & Resource Modelling

Page 10

3 CAMEL Extensions

3.1 Conceptual Analysis
The conceptual analysis of CAMEL is clearly separated into three main sections. Section 3.1.1 explicates what were
the main requirements that drove the extension of CAMEL. Section 3.1.2 explains the CAMEL enhancement process
as well as the way CAMEL will be exploited by the Morphemic platform. Finally, Section 3.1.3 analyses the new
version of CAMEL that has been produced by focusing mainly on those domains that are touched by the
devops/modeller.

3.1.1 CAMEL Extension Requirements
Apart from the obvious need to support polymorphic application modelling, additional CAMEL extension
requirements came into play, which could be either related to:

• the improvement of this language, based on feedback collected from the Melodic and PaaSage projects [34],
[35]

• requirements coming from other Morphemic features and especially the proactive adaptation one2.
• requirements coming from Morphemic use-cases [4]

As such, all CAMEL extension requirements can be summarised as follows:
• Polymorphic-modelling related

o PM1: New configurations for components have to be covered, especially those related to hardware-
acceleration-use scenarios (e.g., with respect to FPGA-based resources).

o PM2: Hosting relationships do not have to be expressed by the user but need to be inferred by the
(multi-cloud) application management platform. This is essentially necessary in the face of multiple
configurations per component where the selection of one can influence the hosting topology of the
application. For instance, a script-based configuration leads to a VM-based hosting, so the respective
application component should be directly hosted by a VM. On the other hand, a container
configuration leads to a container hosting the application component, where the container itself is
hosted by a VM.

o PM3: Each component configuration may come with its own requirement set as different
configurations might have different requirements, e.g., with respect to resources or the environment
on top of them.

o PM4: Components, depending on their form, can be either standalone or complex ones, comprising
multiple, other components. For example, a component managing users could be either offered in a
micro-service, standalone form or be formulated as a composite component that comprises a set of
serverless sub-components/functions.

• Improvement-related:
o IR1: Components should be re-used in the context of different applications that can be modelled via

CAMEL (related to feedback from the Melodic project). This enables to: (a) build new applications
from existing components, thus reducing both the modelling and development time for these
applications; (b) extend existing applications to make them more complex but also increase their
added-value. Such an extension would, however, require to view applications as coarse-grained
components, i.e., as complex components that include other components inside them. The re-use of
such components would then lead to the production of more complex applications comprising
components with different granularity.

o IR2: Technical communication semantics should be introduced (related to feedback from the
PaaSage project) [35] to govern how the communication coupling of application components can
happen at the instance level. In particular, if two application components A and B need to
communicate, then how the communication binding of their instances should take place? Should we
consider that every instance of A should communicate with every instance of B? Or that there is an

2 https://confluence.7bulls.eu/display/MOR/Feature%3A+Proactive+adaptation

D1.1 Data, Cloud Application & Resource Modelling

Page 11

one-to-one mapping between instances of A and B in terms of communication? All these questions
indicate the need to introduce the right, extra elements in CAMEL in order to enable determining the
relevant communication semantics.

• Feature-related:
o FR1: Supporting the modelling of prediction-related metrics. In order to predict the quality of an

application or its components as well as the overall expected utility of an application’s configuration,
there is a need for supporting the modelling of prediction-related metrics. Such metrics actually
relate to the application of a certain prediction technique/method over the measurements of a normal
(single/raw or composite) metric based on a specific probability and time horizon. Based on this
modelling, the platform can then be able to realise such metrics and thus support the production of
the needed predictions.

• Use-case related:
o UR1: Communication requirements (based on IS Wireless use-case requirements identified as UC-

C-UF.1 and UC-1-UF.2 in D6.1 [4]) should be expressed in order to extend the portfolio of scenarios
that can be covered by CAMEL so as to include network-/communication-aware ones. Such
communication requirements should include constraints over the quality of the communication (e.g.,
latency) between two application components. As such, this kind of constraints can restrain the
deployment of both components but still maintaining the flexibility of cloud service selection. In
other words, such constraints do not restrict the deployment of one of the two components in terms
of a specific location but actually restrain where the second component should be placed once the
location of the first one has been selected.

Please note that the first category of requirements, i.e., the polymorphic-modelling-related, include requirements that
have been also identified in D6.1 [4]. This indicates the alignment and common vision of the consortium in terms of
what is polymorphic application modelling and how it can be supported. Further, many other requirements coming
from that deliverable were already supported in CAMEL 2.0 so this is the main reason why they have not been
identified as new. In the following, we supply a table that highlights which relevant requirements from D6.1 have been
already met by CAMEL 2.0 and which requirements are now met by CAMEL 3.0. The table also provides two
additional columns which unveil: (a) whether a specific requirement is met/supported through a specific CAMEL
version alone or also the MDS; (b) which requirements are clearly modelling-related and which are not such that the
goal of CAMEL should have been or must be (depending on its version) to provide support for their achievement
through the supply of respective modelling constructs.

Requirement ID Requirement Name CAMEL

Version
MDS Comment

MOR-SE.1, 2, 3 and
6

Polymorphic
Environments:
Cloud, Hybrid
Clouds, Multi-Cloud,
Bare metal, HPC,

2.0 Original
version

CAMEL via MDS annotations enables to pose
constraints on features related to the resources
of these environments enabling their selection
during deployment reasoning

MOR-SE.4, 5, 7, 8
and 9

Polymorhipc
Environments: Fog,
Edge, Hardware
Accelerators, FPGA

2.0 New
version

Explanation same as previous requirement. In
addition, with respect to MOR-SE.9, it should
be noted that a new environment can be
supported via a further extension of MDS.
There is no need to change CAMEL for that.

MOR-SA.1 to 4 Polymorphic
application forms:
VM, containers,
serverless and more
forms

2.0 Both
versions

CAMEL 2.0 already supports more than three
configuration kinds from those needed. The
additional ones are cluster and PaaS. Please
note that CAMEL 3.0 identifies container
configuration as a distinct configuration kind
while in CAMEL 2.0 this was modelled via a
script configuration. The mentioning of MDS
relates to the fact that apart from the
configurations, there is a need for imposing

D1.1 Data, Cloud Application & Resource Modelling

Page 12

constraints on respective resources (e.g., VM)
or platforms (e.g., serverless).

MOR-CON.1 Preconfigure
multiple deployment
configurations

3.0 - CAMEL 2.0 was able to map a component to
multiple configurations. However, only one
was taken into consideration in the original
Melodic platform. Further, CAMEL 3.0
enables to map each configuration to a
different requirement set. Thus, CAMEL 3.0
caters for the full modelling of this feature.

MOR-SH.1 to 2 Real time
infrastructure and
application
monitoring

2.0 - CAMEL 2.0 enables the complete modelling
of all those infrastructure and application
metrics related to such a monitoring. Which is
a pre-requisite for the achievement of these
two requirements.

MOR-AD.1 to 3 Proactive Adaptation,
Prediction
capabilities on
applications,
prediction
capabilities on
infrastructures

3.0 - CAMEL 3.0 introduces prediction-based
composite metrics which enable to conduct
the prediction of application and infrastructure
metrics. Through such metrics a suitable
utilify function can be also modelled. In this
respect, CAMEL 3.0 provides proper support
to all three requirements.

UC-C-SE.2 Multi-site
deployment

2.0 Original
version

CAMEL 2.0 introduces the right flebility in
terms of different requirement kinds in order
to support the deployment of applications in
multiple sites.

UC-C-UF.1 Targeted
deployment: network
capability

3.0 New
version

Network/Communication requirements can be
specified in CAMEL 3.0. These include
constraints on network/communication
features and properties annotated through the
new version of MDS.

UC-C-UF.2 to 5 Targeted
deployment: price,
packaging,
geographical
awareness,
computing power

2.0 Original
version

CAMEL 2.0 enables to pose
constraints/requirements on all those elements
through the assistance of MDS.

UC-C-SEC.2 Support for secure
communications

3.0 New
version

It is possible through CAMEL 3.0 to pose a
communication requirement that indicates via
a respective MDS annotation that there is a
need to employ a secure private network.

UC-C-SEC.3 Support for security-
related applications

3.0 New
version

Explanation similar to previous one. MDS
now has the capability to specify specialised
security components like firewalls and IDSs
which can be introduced in the application
architecture.

UC-1-SE.2 Platform awareness -
CPU pinning

2.0 New
version

There is a need for specifying a resource
constraint that highlights through MDS the
need for a CPU pinning capability. CPU
pinning has been introduced in new version of
MDS while CAMEL 2.0 is already able to
model resource constraints/requirements.

UC-1-UF.1, UC-3-
UF.2

Support for low
latency in terms of
deployment time,
Targeted
deployment:
deployment time

2.0 Original
version

The utility-based approach followed in
Melodic introduced the ability to include in
the utility function a factor related to
deployment cost which was assessed based on
deployment time. As such, the devops,
through CAMEL 2.0 and MDS original

D1.1 Data, Cloud Application & Resource Modelling

Page 13

version, can include with the most suitable
weight this factor in order to guarantee the
low deployment latency for the respective
application. Obviously, the user can also
specify SLOs that can restrain the deployment
time that an application can have.

UC-1-UF.2 Targeted
deployment: latency
between the deployed
components

3.0 New
version

CAMEL 3.0 enables the specification of
communication requirements between
application components which can include
constraints on latency through the use of the
new MDS version.

UC-C-SE.3 Support for GPU 2.0 Original
version

CAMEL enables through the use of MDS
annotations the specification of constraints on
GPU features in resource requirements. This
enables to select matching resources with
GPUs that exhibit the required capabilities.

UC-2-SE.3 Support for Master
orchestrator
components on
public environment

2.0 - In Melodic, the approach taken was that one
Master orchestrator component was indirectly
deployed in case of the use of at least one
slave/task-based component in an application.
Morphemic aims to follow a direct approach
to handle this capability. This means that the
orchestrator component should be directly
specified in CAMEL along with its
configuration and requirements. This will be
also facilitated by a template CAMEL model
which will include a basic but standardised
architecture of a big data application that can
then be customised based on the requirements
of the current application at hand.

UC-3-UF.1 Targeted
deployment: memory

2.0 Original
version

CAMEL through the use of MDS annotation
can specify memory constraints in resource
requirements. Obviously, memory-related
metric and properties can be also included in
the specification of a utility function.

UC-3-SH1 Track worker
velocity

2.0 - This seems to be a composite application
metric that can be modelled in CAMEL and
then monitored by the platform.

From the above table, it can be seen that 35 requirements are met or supported by CAMEL. This highlights the proper
design of this language to be able to cover both multi-cloud and polymorphic features. Further, it can be seen that
CAMEL 2.0 has been already a well-designed CAMEL version as it is able to cover 27 from these requirements, i.e.,
more than 3 quarters of them. This indicates that CAMEL 3.0 satisfies in addition 8 from the remaining requirements.
This does not mean that there was not a lot of development effort with respect to producing this CAMEL version as
each requirement might lead to a different amount of work to be realised in CAMEL. However, this also evidences
that CAMEL 3.0 is able to meet or support all these requirements.
We should also mention that many of the requirements require the use of MDS. Indeed, by carefully observing the
above table, it seems that this is the case for 27 out of the 35 requirements. This outlines well the need for the
introduction and integration of this metadata schema with CAMEL. From these 27 requirements, 11 are based on the
new version of MDS and 16 on the old one. This highlights that the decision to extend MDS has been correct and that
such an extension contributes to the satisfaction or proper support to many of the requirements identified in D6.1 [4].
They way such an extension has been performed to meet or support these requirements is explained in section 4.1.

3.1.2 CAMEL Enhancement Process & Exploitation Flow
CAMEL 3.0 is a heavily extended version of CAMEL, which provides full support for polymorphic application
modelling while it covers all other requirements related to CAMEL improvement feedback and Morphemic features.
CAMEL 3.0 is rather a draft version. This means that, while developed in the project’s first year, will be validated and

D1.1 Data, Cloud Application & Resource Modelling

Page 14

continuously evolved until the end of the second year, when it will take its final form. The validation will involve a
series of workshops and telcos with both technical and use-case partners of the project. The discussion with the
technical partners will facilitate the determination of the impact of CAMEL changes on the Morphemic preprocessor
and will enable also the changes prioritisation in terms of their realisation in that module/component. The discussion
with the use-case partners will enable the full comprehension of this CAMEL version as well as its ability to fully
model the respective use-cases. In both cases, valuable feedback will be also obtained from both kinds of partners in
terms of CAMEL changes suitability and could enable to further evolve CAMEL 3.0 towards its final form. Such final
form will be then the major CAMEL version that will drive the future versions of the Morphemic Preprocessor. This
final CAMEL form will be also analysed in the context of the D1.3 deliverable due in M24.
The following table enables to compare CAMEL 3.0 with respect to the changes that it has performed on CAMEL 2.0,
i.e., the current CAMEL version, according to the main (management) domains covered by CAMEL. As it can be seen
from this table, CAMEL 3.0 enhances 8 domains and introduces a new one where the extensions in 3 out of the 8
enhanced domains are substantial. All these changes will be well-detailed in the following section.

Table 2 - High-Level view of CAMEL 3.0 changes on CAMEL 2.0

Domain CAMEL 3.0
Core Introduction of a component containment reference covering the whole application. Removal of

application reference.
Application New domain covered by this version. Resembles a deployment type model without hosting

relationships
Deployment Introduction of nodes, groupings of communications per component pair, technical

communication semantics, mapping of configurations to requirements, mapping of components to
application models, introduction of container and image configurations

Requirement Introduction of LinkRequirement (equivalent to CommunicationRequirement in v2.5)
Metric Same as in v2.5 plus introduction of PredictedMetric(Instance) concepts and deletion of

currentConfiguration attribute from MetricVariable class
Data DataSource now refers to Component, DataSourceInstance now refers to NodeInstance
Execution Modification of CommunicationMeasurement, introduction of LinkMeasurement,

NodeMeasurement plus deletion of other measurement kinds)
Metadata Introduction of implemented attribute in MmsObject
Security Introduction of predicted security metrics
Other domains No change

The following figure explains the way CAMEL will be exploited by the Morphemic platform. The CAMEL Designer
is the main CAMEL model producer where CAMEL models can then be uploaded in the Morphemic platform through
the UI for deployment. Such CAMEL models will touch mainly four domains: (a) the application domain to describe
the application architecture and its variants; (b) the requirement domain to explicate the main requirements of the
application and its components; (c) the metric and constraint domains to cover the specification of relevant metrics
and attributes as well as constraint for supporting application deployment reasoning and monitoring. These models are
named as architecture models.
An architecture model is then fed to the Profiler in order to construct and maintain a profile of the respective
application which is critical for application deployment reasoning support. Based on the architecture model and the
non-functional parts of the application profile, the Architecture Optimiser will then choose the best architecture
variant of the application. This will result in the production of an application deployment type sub-model that will be
incorporated in the respective CAMEL model. The resulting CAMEL model is called a provider-independent model.
From that moment and on, the CAMEL model has the right content to be processed by the Melodic core. In particular,
the CP Generator will produce a CP model that will be used as input to the Reasoner (a composite component
comprising the Meta-Solver, Solver and Utility Generator) for deployment reasoning process. The Reasoner will then
produce a specific deployment solution for the application at hand. Such a solution will result in enhancing the
application deployment type model as well as generating a respective deployment instance model. The overall
CAMEL model extended in this way is called a provider-specific model.
Finally, the provider-specific model is taken as input by the Adapter in order to orchestrate the application’s
deployment, including its monitoring infrastructure, through a derived deployment plan based on the cooperation with
the Executionware (Proactive Scheduler). The execution-related feedback is then continuously injected into the
CAMEL model in order to produce an execution sub-model, i.e., a model that covers the current execution state of the
application. The enhanced CAMEL model is called an execution model and drives the subsequent adaptive

D1.1 Data, Cloud Application & Resource Modelling

Page 15

provisioning of the respective application to close the global optimisation loop. Please note here that the monitoring
infrastructure deployed has the capability to produce measurements as well as predictions in order to drive both the
reactive and proactive adaptation of the application, respectively.

Fig. 1 - The exploitation flow of CAMEL. Grey colour denotes new components in the platform while green existing ones, orange denotes new
models in the platform while purple existing ones

3.1.3 CAMEL Version 3.0
CAMEL 3.0 is a new version of CAMEL which completely addresses all requirements specified in section 3.1.1. The
current content of this version is analysed in this section while any kind of adjustment or modification conducted on it
based on the obtained partner feedback will be supplied in deliverable D1.3 “Final Data, Cloud Application and
Resource Modelling”. In the following, the analysis of CAMEL 3.0 is incarnated as follows:

• first, we explicate the main structure of a CAMEL model
• then, we explain in a step-wise manner each part (i.e., meta-model/package) of this structure. The explanation

includes also the changes made to CAMEL 2.0 to reach the desired part content. The focus of the analysis is
mainly on those domains that have been updated in this CAMEL version and have been already implemented
in the Melodic platform (with an exception of a newly introduced domain), which happen to include all those
domains that are expected to be covered in a devops-supplied CAMEL model. More details about the
untouched domains can be found in [31] and CAMEL 2.0 documentation
(https://confluence.7bulls.eu/display/MEL/11+Modelling).

3.1.3.1 CAMEL Model Structure

Any CAMEL model contains a set of sub-models which map to respective CAMEL meta-models or packages
focusing on a particular application management domain. Initially, only specific kinds of models are produced through
any kind of editor that conforms to the CAMEL syntax, mapping to the kind of information that has to be supplied by
a devops in the context of a specific application. Then, while the multi-cloud application management platform is on
operation and manages this application, new models are produced by this platform that are included in the current
structure of a CAMEL model. These models are exclusively managed by the platform (for application management
purposes) and should not be touched by a devops user. The following table showcases all these models by providing a
short description of their coverage as well as the responsible party to produce and maintain them along with the point
in time where this production takes place. It also indicates whether a domain is obligatory to be covered in a CAMEL

D1.1 Data, Cloud Application & Resource Modelling

Page 16

model supplied by a devops/modeller. Finally, it highlights whether a specific domain is implemented or not in the
current version of the Melodic platform.

Table 3 - Details about the domains/aspects covered by CAMEL

Name Coverage Modeller/
Editor

Design/
Runtime

Obligatory
for Devops

Implement
ed

Core Top model, container of other models,
includes containment reference to
application as a composite component

Devops /
System

Both Yes Yes

Application Covers the architecture of an application,
i.e., the components, the different
forms/configurations of these components
as well as the components relationships

Devops Design Yes To be
implemente
d

Deployment The deployment topology of the
application at the type and instance level,
covering the selected configuration of
application components as well as their
hosting and communication relationships.

System Both No Yes

Requirement Any kind of requirement (e.g., resource,
provider, QoS/SLO, optimisation) that can
be associated with one or more
configurations of application components
or the whole application

Devops Design Yes Yes

Constraint Any kind of constraint (single or
composite as logical combination of other
constraints) that can be posed on
either/both variables and metrics

Devops Design Conditional
ly

Yes

Metric All needed information to support
application measurement, including the
specification of (metric) variables, metrics
and their contexts

Devops /
System

Both Conditional
ly

Yes

Scalability Coverage of scalability rules and their
constituting parts, i.e., events and scaling
actions. This aspect/domain is deprecated
for the Melodic platform

Devops /
System

Both No No

Location Coverage of both physical and cloud-
specific locations

Devops Design No Yes

Unit Coverage of different kinds of units of
measurement

Devops Design No Yes

Types Coverage of value types and single values Devops Design No Yes
Security Coverage of security controls, domains,

attributes and metrics
Devops /
System

Both No No

Organisation Coverage of organisations, users, roles,
cloud credentials and access control
rules/policies

Admin Design No No

Execution All details concerning the application
execution like measurements, violations
of SLOs and adaptation actions performed

System Runtime No Yes

Data Data and data sources at both the type and
instance level

Devops /
System

Both Conditional
ly

Yes

Metadata Conceptual schema covering concepts,
relationships and properties that can be
used for annotation and CAMEL model
enhancement purposes

Admin Design No Yes

D1.1 Data, Cloud Application & Resource Modelling

Page 17

In the above table, an underlined aspect/domain/model kind denotes a respective update of this domain or the
introduction of a new one. In conformance to what was stated in section 3.1.2 and Table 2, it can be easily seen that 1
new domain has been introduced (application) and 8 others have been modified. In Table 3, we can also observe that
there are 10 domains that can be touched by a devops, 5 by the system and 2 by the administrator (admin for short)
(with the exception of the core domain that is not accounted for as it is always present in a CAMEL model at the top
level).
The 10 domains covered by the devops concern mainly the design phase in the application lifecycle. However, please
note that not all domains are necessary to be included within a CAMEL model. Three out of all these domains are not
currently supported by the Melodic platform, i.e., the scalability, organisation and security ones, respectively. Three
domains play an auxiliary role and might not need to be touched or already exists a model for them that can be just re-
used in the context of another covered domain. In particular, the unit and type domains are usually used for enhancing
the description of metrics (i.e., metric domain), where the first one already maps to a model of existing, well-known
units. Such an enhancement is optional as it is not currently exploited by the platform. The third domain is location
where again an existing (physical) location model exists that can be exploited for expressing location requirements.
Another class of domains includes those that might be conditionally touched depending on the nature of the
application and its requirements. These domains are the data, metric and constraint ones. The first should be touched
only if big data are manipulated by an application. The other two are necessary only when SLO and optimisation
requirements are to be supplied by the devops. This leaves us with only two obligatory domains which are the
application and requirement ones. The first describes the architecture of the application and the second its
requirements (which might not include SLO & optimisation requirements such that the application deployment is
always optimised based on cost). Thus, to conclude, a devops might need to include in a CAMEL model always 2 sub-
models and conditionally other 3, making up 5 necessary sub-models in total, which is half of the original number that
can be observed in the above table. This is demonstrated in the fifth column of the above table. It is also witnessed in
the following figure that shows a CAMEL model containing 5 sub-models. Please note one important detail: the
application model is part of a component which represents the whole application. That is the main reason that it does
not hang directly from the Camel model element (i.e., the top-level container).

Fig. 2 - Simple Camel Model of an application that comprises the 5 most important and necessary CAMEL sub-models

The multi-cloud application management platform needs to deal with and maintain 4 domains (the security domain is
not counted as not implemented in the platform). The maintenance for most of these domains occurs at runtime, which
is logical if we consider that a platform deals mainly with the runtime execution and adaptation of an application. The
sole exception is the deployment domain where the deployment model of an application at the type level is produced
before the runtime phase, when deployment reasoning is conducted by the platform.
For three out of the four domains previously mentioned, the instance level is mostly touched. This includes the metric
and data domains, where the platform, based on the models@runtime approach, needs to monitor and maintain the
runtime state of both the monitoring infrastructure and the data instances produced and manipulated by the
application. This also includes the deployment domain where the models@runtime approach obviously covers the
current deployment topology of the application at runtime. The final domain covered by the platform is the execution
one, which is maintained for analysis and optimisation purposes (e.g., avoid bad deployments).
The admin is the role that has just one domain to touch in a CAMEL model. This includes the metadata domain
covering the metadata schema of the platform. This domain can be touched even before an application is modelled via
CAMEL. The model mapping to that domain is actually replicated across every CAMEL application model due to the
need to annotate such a model or enhance it with arbitrary feature models. The reason why this domain is touched by
the administrator lies also on the fact that this role is in charge of operating and enhancing the platform, so it has the
complete knowledge of which part of the metadata schema is currently supported by this platform.

D1.1 Data, Cloud Application & Resource Modelling

Page 18

3.1.3.2 Core Domain

The core domain of CAMEL covers either general, abstract concepts or top-level concepts that can be re-used across
different domains. The most remarkable concepts are Model, which represents any kind of model and CamelModel,
which represents a CAMEL model. To be noted that a CamelModel is a Model and that any other sub-model kind in
CAMEL (e.g., DeploymentModel) is also a Model. A CamelModel is a top-level container of sub-models of different
kinds as well as of the main application at hand, which is represented by a coarse-grained Component. Other important
concepts that are captured in this domain include the NamedElement and the Feature ones. The first concept, i.e.,
NamedElement, represents any kind of CAMEL element that has a specific name and textual description while it can
be annotated through using the metadata schema (i.e., by referring to elements of a metadata model). This concept is a
direct or indirect super-concept/class of any other concept/class in CAMEL. On the other hand, the second concept,
i.e., Feature, represents a named element that can contain other feature elements, reaching an arbitrary level of
nesting. This concept enables a CAMEL model to be arbitrary extended with an additional structure without the need
to change the syntax of this language. As such, it is a super-concept of all concepts that require or allow such an
extension. A feature element can also have a set of Attributes that characterise it. The latter map to a generic concept
which represents a named feature characteristic with a specific value, which can be taken from a specific domain of
values (see valueType reference) and can map to a specific unit of measurement. Attributes can be either generic or
can be further categorised into QualityAttributes, i.e., attributes that characterise the quality of a specific
feature/object. The latter can be further categorised themselves into MeasurableAttributes, i.e., attributes that can be
measured through the use of one or more sensors.
The following figure depicts a graphical representation of the abstract syntax of the core domain. In comparison to
CAMEL 2.0, very slight changes have been conducted. These map to:

• the removal of the Application concept. This is not needed any more as an application can be represented as a
coarse-grained software Component.

• the containment reference to the whole application as a Component and not as an Application element in the
CamelModel.

• the removal of the containment reference to Actions, representing generic actions that can be performed by the
platform, in the CamelModel. Actions can be either scaling actions (where the scalability domain is
deprecated in Melodic) or platform actions which are actually captured in a different way in the execution
domain. Thus, this is an unnecessary reference that is not needed and used at all by the Melodic platform.

Fig. 3 - The core domain of CAMEL

D1.1 Data, Cloud Application & Resource Modelling

Page 19

3.1.3.3 Application Domain

This is a new domain in CAMEL that covers the specification of an application model, which is approximately similar
to a deployment type model in CAMEL 2.0. Such an application model covers the architecture of an application,
including all its possible variants in terms of the different forms that the application components can take. The
resemblance to a deployment type model in CAMEL concerns the fact that both the structure and content of these
models is similar. However, there exist particular differences, like the non-existence of hosting relationships that
involve the hosted application components in an application model as such relationships do not characterise the
architecture of an application. Another major difference concerns the fact that an application model includes all
component configurations/forms, while a deployment type model contains one configuration/form per component. A
final, important difference concerns the fact that in an application model each configurations of a component maps to
a set of requirements while in a deployment type model, such a requirement set was exclusively associated with the
component itself.
An application model is a kind of a component graph which contains components and their communication link ports
as nodes and component relationships as arcs (between either components or communication port links). Each
component is associated with a set of requirements that it might impose over its deployment as well as with additional
information, concerning its current version, alternative configurations, the data that it might produce or consume, the
data sources that it might manipulate, its provided and required communication links, whether it is long-lived or not,
whether its instances are allowed to be situated on the same host, and finally the application models that can realise its
functionality.
Through the latter containment association, it is possible to create a hierarchy of application models/components,
where the root of a hierarchy represents the most complex component while going down further the hierarchy one can
find components with an increasingly reduced complexity until he/she reaches the leaves of the trees. Such a hierarchy
also represents decision points in terms of component/functionality realisation. In particular, when being in a
particular place within the hierarchy, it could be decided whether the current complex component can be used as it is
with its standalone/individual form (e.g., in case it is a micro-service), or the hierarchy should be descended to select
simpler components that constitute this component and realise its functionality (e.g., functions that realise a different
part of the functionality of the parent component).
Further, another novelty in terms of application models is that they can include references to external components, i.e.,
components that are not defined in the current CAMEL model. This, thus, enables to re-use existing, already-modelled
components, as much as possible.
Two kinds of component relationships are currently covered by this domain. The first one is the communication
relationship which is represented through the (communication) Link concept. The latter concept represents a
communication link between two components through their provided and required (communication) link ports,
respectively. A communication link does not only relate two components but can also pose requirements over the
quality of the communication between these components which can affect the actual placement of these components
in the multi-cloud landscape. To cover this, a Link in CAMEL 3.0 is associated with a LinkRequirement, which is a
container of communication quality constraints.
Links are also associated to the configuration of their ports as well as with particular, technical semantics that govern
the communication binding of components at the (deployment) instance level. In the latter case, the semantics indicate
what should be the mapping of the paired components in terms of their instances during runtime, i.e., application
deployment and execution. Such a mapping determines the low and upper multiplicity of the instances of both the
source and target component in the communication. For instance, if the low and upper multiplicity of both components
is one, then there should be a 1-to-1 mapping between the instances of these components. On the other hand, if the
source component multiplicity is [0,1] and [1,1] for the target component, then this means that each source component
instance should be mapped to exactly one target component instance but a target component instance is not certainly
that will be bound to a source component instance.
The second component relationship captured concerns the location coupling between the related components. In
particular, such a relationship specifies that a set of (application) components should be placed in the same location,
where the location granularity can vary between such relationships. The variation highlights that the interpretation of
location similarity can be different: it can mean the same host, the same zone, the same region or the same cloud.
Further, the enforcement of such a relationship can be relaxed or obligatory. Relaxed means that the (cloud application
management) platform should examine whether it is possible to host all the related components in the same location. If
it is not, then the application deployment solution found can be followed irrespectively of that fact that it violates this
relationship. On the other hand, in case that this relationship is obligatory, this means that it needs to be satisfied at all

D1.1 Data, Cloud Application & Resource Modelling

Page 20

costs. Thus, if no possible deployment of the application can satisfy it, then the platform will fail to find a deployment
solution for this application.
As it was indicated above, a component is associated with a set of requirements, which includes resources, PaaS,
location, security, OS and image requirements. Further, it is possible to define a global set of requirements that cover
all application components. Obviously, it is possible that there can be overlap between local and global requirements.
In this case, the local requirements prevail as they have higher priority than the global ones. A novelty introduced in
CAMEL 3.0 (in contrast to previous CAMEL version) concerns the fact that such a set of requirements can be also
associated with the configuration of a component, something which is sensible if we consider that different application
forms can come with their own, differentiated requirements. This signifies that fact that now we have three levels of
prioritisation of requirement sets: global, component and configuration from the lower to the highest one.
A component configuration is represented in CAMEL via the Configuration concept. This is a super-concept which is
further classified with specific and concrete configuration kinds. CAMEL 2.0 included 4 concrete configuration
concepts named as ScriptConfiguration, ClusterConfiguration, ServerlessConfiguration and PaaSConfiguration.
CAMEL 3.0 adds two new configuration kinds, named as ImageConfiguration and ContainerConfiguration. The
semantics of such configuration kinds is now shortly explained below. More details along with specific, real-world
examples can be found in: https://confluence.7bulls.eu/display/MOR/CAMEL+Configuration+Alternatives

• ScriptConfiguration: Enables to manage the lifecycle of an application component through respective OS-
specific commands. The modeller could also specify the id of the image that can be used for the
deployment of the application component, thus making the specified configuration as image-specific.
Further, although still not supported by the Melodic platform, it is possible to rely on a devops tool and
utilise tool-specific commands to manage the component lifecycle. In that case, the name of the tool
should be specified. This configuration is more suitable for deploying components directly to VMs.

• ClusterConfiguration: enables to configure a task-based component so as to be properly deployed in a big
data processing framework like Spark. The name of the framework needs to be specified in the form of an
MDS annotation. In addition, the modeller should supply the URL of the binary code of the component
and optionally the name of the class to be executed (in case of Java code). Finally, additional
configuration details can be supplied like configuration parameters for the framework as well as runtime
arguments for both the framework and the application component.

• ServerlessConfiguration: enables to properly configure a component that takes the form of a (serverless)
function. Such a configuration is always serverless-platform-specific. For this configuration, the modeller
should supply either the URL of the binary code of the component or a build configuration that clarifies
how the component binary can be built from the source. He/she can also determine whether the platform
should sense changes on the component binary or source code in order to redeploy it in the corresponding
serverless platform used. Finally, some particular details can be specified in the form of an
EventConfiguration, which highlight the name of the function endpoint and its bound HTTP method as
well as the frequency of (platform-originating) calls that should be made to this component/function in
order to keep warm its container.

• PaaSConfiguration: enables to configure a component in an underlying VM through the use of a
standardised PaaS API. In this sense, the modeller should specify all necessary details, which include: (a)
the endpoint of the API; (b) its version; (c) the name of the API; (d) the place from which the API-
specific configuration of the component can be downloaded.

• ImageConfiguration: it plays a dual role. On one hand, it enables to just re-use and instantiate a (VM)
image which already includes the application component (installed and running). On the other hand, it
enables to instantiate a component’s image within an environment that allows the exploitation of specific
types of hardware-accelerated resources like FPGAs. To distinguish between these two cases, there is a
boolean attribute which determines whether the (component) image is hardware-accelerated. Further, in
the hardware-acceleration case, the modeller can also specify the kind of the hardware-accelerated
resource(s) through an MDS annotation. This is a provider-specific configuration in the sense that each
environment that can host a component image instance tailored to a specific cloud. As there can be
multiple (VM) images that can enable such an environment within a specific cloud, it is recommended to
associate such an image configuration with an (VM) image requirement.

• ContainerConfiguration: This is actually a split of the original ScriptConfiguration in CAMEL 2.0 in the
sense that it is tailored specifically for container-based components, where the issuing of script-based
commands is actually not necessary. In such a configuration, it is obligatory to specify the id of the
component container image. Optionally, through an annotation, the actual container type (e.g., Docker)
can be specified (essentially, this could be handy in case that the cloud application management platform
supports multiple container kinds). Further, the modeller can also specify, when needed, some

D1.1 Data, Cloud Application & Resource Modelling

Page 21

environment configuration parameters through a specific feature as well as particular, container-tool-
specific commands for starting the component container or updating it. Please note that such a
configuration is container-tool-specific and not provider-specific, thus catering for multi-cloud application
deployments.

The following two images showcase, on one hand, the components and their relationships, and, on the other hand, the
component configuration alternatives. As this domain is new to CAMEL, there is no need to clarify changes with
respect to CAMEL 2.0, although some comparisons and differentiation has been made clear in this section to clarify
the change of focus and the optimisations/enhancements that have been performed over the specification of
application architectures/deployment topologies.

Fig. 4 - First part of application meta-model pertaining to components and their relationships

D1.1 Data, Cloud Application & Resource Modelling

Page 22

Fig. 5 - Second part of application meta-model pertaining to component configurations

3.1.3.4 Deployment Domain

The deployment domain in CAMEL 3.0 has been significantly modified. In particular, as indicated in the previous
section, the variation in the component configuration is now covered in the application model while the deployment
type model has been restrained to represent the application topology at the type level where the configuration of each
application component is fixed.
As a deployment topology of an application can be considered as a graph, a new concept has been created which is
named as a Node. This is a concept that is common also in other languages (e.g., TOSCA [10]). This concept can
represent any kind of component, not necessarily a software component of the current application at hand. Thus,
components like VMs, containers, PaaS platforms which can host application components can be also represented and
modelled. In case that a node does represent an application component, then that component should be referenced
along with its fixed configuration/form. In essence, a deployment type model is an outcome of the reasoning process,
where the configuration of each application component is selected along with the resources that will be utilised to host
it.
A node can also have a set of provided hosting ports as well as a required hosting port. In this way, we can also
distinguish between components which can only host other components (e.g., VMs), components that can be only
hosted (e.g., software components) and components that can host other components as well as be hosted by others
(e.g., containers). In fact, hosting is one of the main relationship kind between nodes. While the main change with
respect to CAMEL 2.0 is the fact that arbitrary hosting relationships can be formed (e.g., a software component is
hosted in a container which is hosted in turn in a VM). This is a powerful modelling feature that is well-suited to the
need to support different kinds of component forms that require different hosting topologies to be formulated. Please
note that always a hosting relationship, represented by the Hosting concept, enables to connect one provided hosting
port with all the required hosting ports that it hosts, and thus maps to a 1-N relationship between the host and the
hosted component. Further, a hosting relationship enables to configure properly the different ends through the use of
respective configuration elements.
In this node graph that is represented by a deployment type model, another core node relationship that is captured is
the Communication one, which represents a communication relationship between nodes/application components. Such
a relationship covers any kind of communication that happens between two components/nodes, irrespectively of the
communication direction. In this respect, such a relationship, apart from referring to the two related nodes, it also

D1.1 Data, Cloud Application & Resource Modelling

Page 23

provides references to all the (communication) links between these two nodes. Where each link also includes a
configuration point at each end of the communication (as indicated in the previous section).
The following figure showcases the content of the deployment type model at the conceptual level by hiding the actual
concept of a DeploymentTypeModel in order to reduce the complexity of the concept relationships and thus enhance
the readability of the figure. In order to keep the size of the deliverable appropriate, we have also neglected the
analysis of a deployment model at the instance level also with the rationale that instance-based concepts are more or
less similar and have counterparts at the type level while a full analysis of this deployment domain part will be
supplied in the full CAMEL 3.0 documentation. Finally, due to the fact that a comparison between a deployment type
model in CAMEL 2.0 and an application model in CAMEL 3.0 has been already supplied (in the previous section),
there is no reason of repeating the changes that have been conducted in CAMEL 2.0 to produce CAMEL 3.0 for the
deployment domain.

Fig. 6 - The deployment meta-model of CAMEL (type level)

3.1.3.5 Requirement Domain

This is an important domain in CAMEL as it enables to specify all application and component requirements that need
to be met for a specific application by its management platform. In comparison to CAMEL 2.0, CAMEL 3.0
introduces only a very slight change, which concerns the addition of the LinkRequirement concept. Thus, in the
analysis that follows, we supply a short summary of what CAMEL 2.0 already captured and we focus on the semantics
of the newly introduced concept.
Any requirement in CAMEL, represented by the Requirement concept, is a kind of a feature; this means that it can be
extended through MDS annotations and arbitrary feature models that specify constraints on MDS-specific attributes
and concepts. Requirements can be hard or soft. Hard requirements need to be met at any cost by the application
management platform. On the other hand, the platform will attempt to satisfy soft requirements in a best-effort basis.
Hard requirements can be further distinguished into provider, image, resource, PaaS, OS, Service Level Objective
(SLO), location, security, horizontal/vertical scale and link requirements. Provider requirements restrain the

D1.1 Data, Cloud Application & Resource Modelling

Page 24

deployment space into a set of specific cloud providers. Image requirements specify the ids of the images that can be
used to instantiate the VMs on which application components can be hosted. Resource requirements enable to specify
constraints over the characteristics of resources through the use of feature models. Similarly, PaaS requirements
enable to specify constraints over the characteristics of a PaaS environment again through the use of feature models.
OS requirements enable to constrain the OS on which a component can be deployed. Service Level Objectives are
constraints that can be posed over the performance of an application component or the whole application at hand.
Location requirements restrain the deployment of an application component over a specific set of locations. Security
requirements restrain the deployment of application component(s) over only those cloud providers that satisfy and
implement a set of security controls. Horizontal scale requirements restrain the number of instances that an application
component can have in a certain range. Vertical scale requirements can again be mapped to feature models but are not
currently supported by the Melodic platform.
The new kind of hard requirement introduced in CAMEL 3.0 is the LinkRequirement, i.e., a requirement over the
communication between two application components. Such a requirement can be posed over the quality characteristics
of the components communication through the use of an arbitrary feature model. As such, the LinkRequirement
concept is empty in content but is an indirect sub-concept of Feature.
Only one specific soft requirement sub-kind has been modelled in CAMEL which is named as
OptimisationRequirement. In such a requirement, the modeller can specify the optimisation goal, i.e., to maximise or
minimise, as well as the (mathematical) expression to optimise which maps to a metric variable. This requirement kind
is quite critical in order to produce optimal application deployments as it enables the evaluation of the utility of such
deployments through the use of the metric variable. Thus, it really caters for the utility-based and thus optimal
deployment of multi-cloud applications.
The following figure showcases the core content of this domain for all the requirement kinds analysed. We utilise the
gray colour to showcase the sole change/addition conducted over CAMEL 2.0.

Fig. 7 - The requirement meta-model of CAMEL

3.1.3.6 Metric Domain

This domain concerns the way the quality of an application can be measured, thus tends to supply all details in order
to guarantee the measurability of multi-cloud applications. Similarly to the deployment domain, the models@runtime
[5] approach is followed with the rationale that the platform needs to maintain the state also for the application’s
monitoring infrastructure, especially as the application adaptation directly influences it. Due to keeping the size of this
deliverable suitable as well as focusing mainly on devops users, we do not provide details about the instance level of

D1.1 Data, Cloud Application & Resource Modelling

Page 25

this domain. Essentially, also for the reason that this level has not been modified in CAMEL 3.0. Thus, the analysis
focus is mainly on the type level.
The core concept of this domain is Metric, which represents any kind of metric. A metric references a metric template,
which supplies some common information among similar metrics, like the (quality) attribute being measured, the unit
of measurement and the value type. Similar metrics can be considered as those which can be computed from each
other. For instance, a metric of raw response time and a composite metric of average response time have as common
all such information (e.g., the value type can be from 0 to positive infinity and the measurement unit can be seconds
while both measure the quality attribute of response time).
A metric can be single/raw, composite or a metric variable. A single metric can be computed from sensors. A
composite metric is computed from other metrics through the use of a (mathematical) formula. A metric variable can
be considered as a special kind of metric which is computed during deployment reasoning. In other words, it takes a
value that can rely on the (optimal) deployment solution computed by the platform or on the node candidates that
match the requirements of a certain application component. This is its main actual distinction from the other kinds of
metrics which are computed directly or indirectly from sensors. A metric variable can concern a specific application
component and might be computed over the node candidates of that component. It can be single or composite. A
single metric variable runs over each node candidate of a component. For instance, a metric variable of cost runs over
the cost of each node candidate. In other words, its actual value can depend on the deployment solution derived (and
thus the actual node candidate selected to support the deployment of the application component at hand). A composite
metric variable applies a certain (mathematical) expression over other metric variables. For instance, maximum cost
over the node candidates of a certain component can be computed by applying the max function over the single metric
variable of cost per node candidate. In this case, such a cost is more or less irrespective of the deployment solution in
the sense that all node candidates of a component have to be computed before the actual deployment reasoning
problem is solved.
CAMEL 3.0 introduces a new metric kind which is named as PredictedMetric. This is considered as a (special)
composite metric which can be computed out of the measurements of a certain metric by applying a specific
prediction method as a mathematical function (so the mathematical formula will be the application of the prediction
method on the metric to be predicted). However, there are some additional details that need to be supplied for such a
metric including the prediction horizon, i.e., for how long the prediction accuracy is guaranteed in the future, and the
prediction probability, i.e., the probability of occurrence of the predicted metric value. The prediction horizon is also
associated with the actual time-based (measurement) unit concerned (e.g., seconds or minutes). Through this new
metric kind, it is now possible to affect the deployment solution of an application as predicted metrics can participate
in SLOs and utility formulas.
The metrics, but not the metric variables, are associated with a metric context whose complexity depends on the
metric complexity. A metric context carries important details that affect how a metric is measured like the window (of
measurement), the (measurement) schedule (i.e., the measurement frequency) and the object context. The latter
reflects the actual object that is being measured which can be a (application) component, a data (item) or, now in
CAMEL 3.0, a (communication) link. A metric window can be time-based (it is considered full when a certain time
period has passed), size-based (it is considered full when a set of measurements with a specific size have been
collected) or mixed (both time- and size-based). It can be also a sliding (current measurements stored slide to
accommodate space for a new measurement to be inserted) or normal window (full windows become empty to
accommodate space for new measurements). A metric schedule determines the frequency of measurement, i.e., how
often a metric can be measured by specifying the time period of this frequency and additional, optional details like
when the measurement can be started and ended and how many times it can be repeated.
Single/raw metrics are associated with single/raw metric contexts, which also determine the actual sensors that will be
used for measuring these metrics. On the other hand, composite metrics (including predicted ones) are associated with
composite metric contexts, which determine the way the component metric measurements should be grouped and what
are the component metric contexts. As such, the composite metric contexts dictate the exact way composite metrics
can be measured from other metrics based on both their (mathematical) formula and the way the measurements of the
component metrics can be computed and grouped before being applied in that formula.
Finally, a Sensor can be considered as a component which is responsible for producing the measurement values of
single/raw metrics. Such components are either supplied by the platform or they are realised by the devops and
become part of the application deployment architecture/topology. Sensors can be either pull or push based. When
sensors are offered by the platform, we need to supply particular configuration details for them (e.g., what is the
implemented class for the sensor and which metric from those that can be measured by the sensor should be computed
- all in one configuration string). Please also note that sensors can be also part of an application or can be external (to
the platform). In that case, we do not need to supply any kind of detail about the sensor apart from the fact that it can

D1.1 Data, Cloud Application & Resource Modelling

Page 26

be pull or push based. It will be then the responsibility of the sensor to properly supply its computed measurements to
the right components of the platform.
The following figures show the metric and context parts of this domain where the grey colour is used to denote new
concepts or properties/attributes that have been introduced in CAMEL 3.0.

Fig. 8 - The different kinds of metrics in the metric meta-model

Fig. 9 - The context part of the metric meta-model

D1.1 Data, Cloud Application & Resource Modelling

Page 27

3.1.3.7 Data Domain

The data domain in CAMEL follows again the models@runtime approach as it is considered a crucial domain and we
need to constantly keep an eye on its state as it can continuously change and can have an impact on the
deployment/reconfiguration of an application. This domain has been slightly modified in CAMEL 3.0, mainly in order
to keep the right references to the right concepts from the application model (and not the deployment type model as it
was the case in CAMEL 2.0).
In this domain, at the type level, two main concepts are introduced: Data and DataSource. The first represents a data
(item) which is maintained by a data source and might include other data items inside it. Such a data item might be
consumed or produced by application components, as it was indicated in section 3.1.3.3. A DataSource is a source of
data (items), i.e., it can be considered the host and management medium for such data. A data source can be external,
so it can be outside of the management scope of the platform but can influence the placement of components and other
data sources/items, or internal, in which case it maps to an application component that manages it. At the same level,
we have also the DataTypeModel, a container of both data and their sources.
At the instance level, similarly named concepts have been introduced with similar semantics but they now represent
concrete data (items) and sources. Further, such concepts directly refer to their type. In the case of
DataSourceInstances, it should be also explicated that if they map to an internal data source, they have to be
associated with the respective instance of a node that manipulates them. Thus, while at the type level, data sources are
associated with application components, at the instance level, data sources are associated with node instances, i.e.,
instances of application components.
The following figure depicts the conceptual model of this domain where with grey colour the main changes introduced
in CAMEL 3.0 are highlighted.

Fig. 10 - The data meta-model in CAMEL

3.1.3.8 Execution Domain

This domain has been designed in order to maintain the execution history of an application. Each deployment episode,
which includes the deployment, reconfiguration and undeployment of an application, maps to a certain container of all
relevant elements that is named as ExecutionModel. Such a model specifies various details about the respective
deployment episode, such as what was its start and end point in time, what was its overall (deployment) cost, and what
were the requirements and data type models that led its evolution over time, i.e., the evolution of the application’s
deployment episode. In addition, this model includes various elements that were created/occurred during the
application’s deployment episode, such as measurements, SLO violations, (scalability) rule triggers (deprecated for
the Melodic platform) and history records.

D1.1 Data, Cloud Application & Resource Modelling

Page 28

Measurements can be of different kinds but all share some common information, like what is the measurement value
and at what point in time this measurement was produced as well as what was the instance of the metric used to
produce it. A NodeMeasurement (newly introduced in CAMEL 3.0) represents the measurement of any kind of node
like a component, a container or a VM. This concept replaces a set of similar concepts that are part of CAMEL 2.0,
i.e., the VMMeasurement, ContainerMeasurement, and SoftwareComponentMeasurement ones. A node measurement
can be associated to either a node or a node instance. This depends on the nature of the metric (instance) involved. In
particular, if the metric is computed over the measurements of all instances of a node, it maps to the node itself. On the
other hand, if it is computed from measurements of only one node instance, it maps directly to that node instance only.
A LinkMeasurement is another newly introduced concept which enables to measure the quality of a communication
link. Similarly to the case of NodeMeasurement, a link measurement can be associated with either a link or a link
instance. A CommunicationMeasurement (a concept from CAMEL 2.0) has a similar scope but attempts to measure
the quality of a set of communication links between two components. It is also associated with either a communication
or a communication instance.
DataMeasurement is the last kind of measurement that represents measurements related to data metrics (instances).
Similarly to the case of the other measurement kinds, this measurement can be associated with either a data or a data
instance.
SLO violations, as their name witnesses, indicate the occurrence of an event of an SLO violation. In this respect, they
refer to the measurement that led to this violation, the SLO that has been violated and the time point in which the SLO
assessment took place. Rule triggers indicate the occurrence of scalability rule triggering, which can happen when the
event mapping to the respective scalability rule has occurred. Apart from indicating the scalability rule that has been
triggered, rule triggers also specify the point in time that this triggering has occurred.
Finally, a HistoryRecord can be considered as a recording of the transition of the application from one deployment or
data instance model to another one either in the context of application reconfiguration or due to the production of
specific data instances. In either case, this recording also captures other information like what was the cause of the
transition, what was its start and end time and what is its type. Further, it also includes HistoryInfo elements which
capture all the actions that have been performed by the platform in order to realise the transition (along with their
timing and affected objects).
The graphical representation of the abstract syntax of this domain is depicted in the following figure where again in
grey colour we can see the changes conduced in the context of CAMEL 3.0.

D1.1 Data, Cloud Application & Resource Modelling

Page 29

Fig. 11 - The execution meta-model of CAMEL

3.1.3.9 Metadata Domain

This domain has been developed in CAMEL in order to support the capturing of the MDS and its use in annotating
CAMEL elements as well as arbritary feature models that extend, at the model level, these elements. In this domain,
the respective container/model kind is named as MetaDataModel and contains any kind of MDS element. MmsObject
is a concept that represents any kind of MDS element. Thus, it conveys all the common information across all MDS
element kinds, like the element id, name, URI and (textual) description. CAMEL 3.0 introduces another information
piece named as implemented that clarifies whether the respective MDS element is supported by the platform (i.e., the
platform takes into account its use in annotations and can exploit such an annotation for one or more reasons,
especially if it concerns the specification of attributes - e.g., node candidate filtering or deployment reasoning).
The different kinds of MDS elements include concepts, properties, concept instances and property instances. A MDS
concept is represented by MmsConcept, which includes information like the parent MDS concept of this MDS concept
as well as its properties and instances. A MDS property is represented by MmsProperty. Such a property can be an
object or data property. In the first case, it relates two MDS concepts, so both of them need to be referenced. In the
second case, it relates on MDS concept with a specific data type (from which the property can take its values)
mapping to a specific URI. A MDS concept instance is represented by MmsConceptInstance, which is associated with
all its MDS property instances. The latter are finally represented by MmsPropertyInstance. An MDS property instance
relates to its type and might have either a single value or a concept instance (value) depending on the kind of property
its type is (i.e., where its type is a data or object MDS property).
The following figure depicts the conceptual model of this domain where with the grey colour we can see the single
update that has been conducted to CAMEL 2.0 in the context of CAMEL 3.0.

D1.1 Data, Cloud Application & Resource Modelling

Page 30

Fig. 12 - The conceptual model of the metadata domain in CAMEL

3.1.3.10 CAMEL 3.0 Benefits

We close the analysis of CAMEL 3.0 by supplying the benefits of this new version of CAMEL which mostly
correspond to the initially analysed requirements in section 3.1.1:

• CAMEL 3.0 enables to re-use not only individual components but whole applications. This enhances
application development (as the user could discover and re-use existing components from other
applications) as well as speeds up the modelling of multi-cloud, polymorphic applications.

• CAMEL 3.0 supports polymorphic application modelling as it allows the specification of multiple forms
per application component as well as the requirements mapping to each form. The Reasoning process
benefits from this specification as it can select the most suitable form as well as the most suitable resources
to support the execution of each application component by considering both requirements and optimisation
objectives at both the component/local and application/global level.

• In CAMEL 3.0, the user does not have to specify any kind of deployment model and any kind of hosting
topology within it. Everything is automatically derived by the corresponding (multi-cloud) application
management platform that exploits CAMEL models.

• CAMEL 3.0 supports communication/network-awareness as it enables to specify communication
constraints and requirements as well as metrics focusing on measuring the communication between
application components. This enhances the portfolio of use-cases that CAMEL can support.

• CAMEL 3.0 resembles TOSCA at the deployment domain and can enable the specification of complex
hosting topologies between various kinds of components (e.g., application software, VMs, containers,
operating systems, etc.).

3.2 Language Implementation
CAMEL 3.0 was implemented by extending both the abstract and textual syntax of CAMEL 2.0. The abstract syntax
was enhanced by modifying CAMEL’s meta-model in ECORE3. Such a modification included the incorporation of
new classes, attributes and properties, the migration of existing ones in different places as well as the deletion of the
unnecessary ones. It also involved the updating of the OCL rules that govern the semantic cross- and intra-model
validation of CAMEL models. This updating took place inside the ECORE model of CAMEL through the use of the

3 https://www.eclipse.org/modeling/emf/

D1.1 Data, Cloud Application & Resource Modelling

Page 31

OCL4 Editor5 of the Eclipse Environment6. Out of the ECORE model of CAMEL, its respective domain code has been
automatically produced by exploiting the automatic code generation facilities of the Eclipse Environment. Such code
can then be exploited for the management of CAMEL models, where such a management involves tasks like CAMEL
model creation, validation, storage and reading/parsing. Please also note that the (enhanced) CAMEL framework
supports two encodings of CAMEL models: XML-based (XMI) and textual (conforming to CAMEL’s textual syntax -
see paragraph below). This means that models in any of these two encodings can be written or read by a computer
program.
The textual syntax updating relied mainly on modifying the Xtext7 model of CAMEL to comply to the new CAMEL
version (in terms of the abstract syntax elements) via the use of the Xtext Editor of the Eclipse Environment8. Please
note that such an updating was deemed more suitable in comparison to the re-generation of the whole textual syntax
(Xtext) model from scratch due to the effort required in the latter case to modify this model according to specific
textual/formatting patterns that have been followed from the very first version of CAMEL. Apart from modifying the
Xtext model, additional, lightweight modifications were performed also in those places related to the documentation
of CAMEL where information about CAMEL classes is displayed when the user hovers over a specific CAMEL
model element.
In the following, we supply relevant implementation links related to CAMEL 3.0:

• Source-code:
https://bitbucket.7bulls.eu/projects/MEL/repos/camel/browse/camel?at=refs%2Fheads%2Fcamel_3.0

• Meta-model:
https://bitbucket.7bulls.eu/projects/MEL/repos/camel/browse/camel/camel/model/camel.ecore?at=refs%2Fhe
ads%2Fcamel_3.0

• Documentation: https://confluence.7bulls.eu/display/MOR/CAMEL+3.0
• Textual Editor Installation Instructions:

https://confluence.7bulls.eu/display/MEL/%5BCAMEL%5D+Camel+2.0+Eclipse+%28oxygen%29+editor+installatio
n

4 Metadata Schema Extensions

4.1 Conceptual Analysis
This section introduces an extensive update of the vocabulary entitled Metadata Schema (MDS) which was introduced
as part of the Melodic project [18]. This schema aggregates a number of classes and properties that correspond to
concepts used for describing requirements, constraints and offerings’ characteristics in multi-cloud placement
decisions. The structured description of these characteristics constitutes the formal means for extending the CAMEL
language with appropriate concepts related to big data management, the optimisation of the placement of processing
jobs and access control in multi-cloud environments. MDS comprises the Application Placement, Big Data and
Context Aware Security models that group a number of classes and properties to be used for defining where a certain
big data application should be placed; what are the unique characteristics of the data artefacts that needs to be
processed; and what are the contextual aspects that may be used for restricting the access to the sensitive data.
As part of the work conducted in Morphemic’s WP1, MDS was enhanced to cover the desired abstraction constructs,
which will be used in CAMEL for modelling polymorphic applications, regarding the areas of data management,
polymorphic application design as well as the heterogeneous resources and platforms to be used. Besides the data
aspects, the extensions involve concepts and properties related to the modelling of various types of resources and
platforms, including HPC resources, accelerators, as well as serverless capabilities along with network related aspects
that should drive or affect the cloud application deployment. Currently, 395 updates and additions have been
introduced, taking also into account the MORPHEMIC use case requirements analysis [4]. These involve 109 updates
or new additions regarding classes and subclasses and 286 additions of object and data properties.

4 https://www.omg.org/spec/OCL/
5 https://projects.eclipse.org/projects/modeling.mdt.ocl
6 www.eclipse.org
7 https://www.eclipse.org/Xtext/
8 https://www.eclipse.org/Xtext/documentation/308_emf_integration.html

D1.1 Data, Cloud Application & Resource Modelling

Page 32

Fig. 13 - Metadata Schema overview

In Fig. 13 a high-level overview of the Metadata Schema (MDS) is provided in order to depict the top-level classes of
this schema. One of the first additions is a new top-level property: isImplemented that is inherited to all the subclasses
of our model. This is a data property with xsd:Boolean values that will be used in order to define which classes and
properties modelled in the Metadata Schema can be used for a certain application modelling that will drive its
management by the MORPHEMIC platform. The true value for this property implies that the relevant information can
be retrieved when fetching node candidates or can be measured through dedicated sensors once used. Therefore, the
MDS entities that can be used in CAMEL when modelling a certain application should have a true value for their
isImplemented data property.
It could be argued that this data property is not needed as all elements of MDS should be implemented in the
Morphemic platform. However, this is not the case for the following reasons: (a) this metadata schema supplies a
taxonomy of relevant concepts, thus higher-level concepts are not meaningful to be included in CAMEL model
specifications and be also implemented in the platform; (b) some new MDS elements might not be implemented in the
platform due to resource restrictions and the prioritisation of the relevant features to be realised; (c) the value of MDS
goes beyond the Morphemic platform as MDS can be re-used in the context of multiple platforms, either in the form
of research prototypes or stable, commercial implementations.
All the extensions have been described in a tabular format, which follows the description of the initial version of MDS
[18] and provides the hierarchy of classes and properties along with their short description. Due to the size of the
tables, these are provided in the Appendix I of this deliverable. For each of the main extensions of the model, we now
provide in respective sub-sections a short description of the extension along with an abstract figure (i.e., mind map
notation) that gives a bird’s eye view of the new classes and properties introduced as well as a fine-grained depiction
of the extension through UML class diagrams, where the reader may find out the value types of the object and data
properties. A more complete view in form of a high-resolution image of the complete MDS taxonomy can be found
here9.
Please note that we have utilised a specific colouring scheme in the abstract figures where the white colour denotes
classes, the yellow colour properties of classes and the red colour instances of classes.

4.1.1 Processing
In Fig. 14, we provide the abstract view of the MDS updates regarding the Processing class (which is subclass of
Application Placement Model/IaaS). This class involves any infrastructural feature bound to the processing capability
of virtualised resources. The classes Processing, CPU and Memory have been enriched with additional properties,
while new important classes have been added. In Fig. 15, the updated abstract view of the Memory class is given.

9 https://melodic.cloud/UuTf-KRW.png

D1.1 Data, Cloud Application & Resource Modelling

Page 33

Fig. 14 - IaaS high-level as well as CPU and HPC classes

Fig. 15 - The memory class hierarchy

In addition, HPC (see the respective hierarchy in Fig. 14) and Accelerator (see the respective hierarchy in Fig. 16)
classes were introduced. HPC refers to the high performance features provided by the computing platform which can
boost the overall performance of an application. The Accelerator class refers to application-specific hardware
designed or programmed to compute operations faster than a general-purpose computer processor. It involves the
following main subclasses:

• GPU (see Fig. 16) which refers to IaaS resources that use graphics processing units (GPUs), i.e., specialized
electronic circuits initially designed to rapidly manipulate and alter memory to accelerate the creation of
images in a frame buffer.

D1.1 Data, Cloud Application & Resource Modelling

Page 34

• ASIC (see Fig. 16) which refers to application-specific integrated circuits (ASICs), a category of hardware
accelerators that employ strategies, such as optimised memory use and the use of lower precision arithmetic,
to accelerate calculation and increase the throughput of computation.

• VPU (see Fig. 16) which refers to the vision processing unit (VPU), a category of microprocessors intended to
accelerate machine vision algorithms and tasks.

• FPGA (see its hierarchy in Fig. 17) which refers to IaaS resources that use field programmable gate arrays
(FPGAs), as integrated circuits made to be configured by the user after manufacturing.

Fig. 16 - Accelerator high-level as well as GPU, ASIC, and VPU Classes

Fig. 17 - The FPGA class hierarchy

D1.1 Data, Cloud Application & Resource Modelling

Page 35

The complete class diagram for the Processing domain can be seen in Fig. 18.

D1.1 Data, Cloud Application & Resource Modelling

Page 36

Fig. 18 - The UML class diagram for the Processing domain

D1.1 Data, Cloud Application & Resource Modelling

Page 37

4.1.2 Network
Another important subclass on the IaaS class that has been introduced in the MDS is the NetworkEntity to represent
any kind of network entity that could be included in a specific cloud. Several properties and subclasses have been
introduced to cover all the network-related elements that can be considered for managing applications hosted over
multi-clouds and fog computing environments. The main subclasses of the NetworkEntity class are the following:

• Network (see Fig. 19) which refers to the network related aspects that bind the operation and communication
capabilities of an offered or a requested (Fog) IaaS resource.

• NetworkQoS (see Fig. 19) that represents the main aspects of the network quality of service.
• SoftwareNetworkEntity (see Fig. 19) that represents a software-based network entity.
• HardwareNetworkEntity (see Fig. 20) that refers to all the aspects of hardware-based network entities that

may constitute network nodes serving the cloud application components.

Fig. 19 - Network Entity high-level as well as Network, NetworkQoS and SoftwareNetworkEntity classes

D1.1 Data, Cloud Application & Resource Modelling

Page 38

Fig. 20 - The hierarchy of the HardwareNetworkEntity class

In Fig. 21, we provide all the details regarding the extensions of the NetworkEntity class in a UML class diagram.

D1.1 Data, Cloud Application & Resource Modelling

Page 39

Fig. 21 - The UML class diagram for the network domain

D1.1 Data, Cloud Application & Resource Modelling

Page 40

4.1.3 PaaS
Another important class of the Application Placement Model is the PaaS class which encapsulates all the attributes
related to platform level cloud resources that are required and offered for deploying Morphemic-enabled applications.
The main addition refers to the new Serverless class that represents all the aspects of serverless platform-as-a-service,
i.e., a PaaS that enables the deployment of functions/serverless components in the cloud. The main subclasses of the
Serverless class are the following:

• ServerlessPlatform (see Fig. 22) which represents a specific serverless platform. Underneath this class, all
major serverless platforms can be found as instances of the ServerlessPlatform class.

• ServerlessFramework (see Fig. 22) which represents a framework that enables the construction and
deployment of serverless functions

• EventType (see Fig. 22) which represents the types of events that can trigger the execution of functions.
• Composition (see Fig. 22) which represents the technology of a serverless platform to support the composition

of functions.
• Cost (see Fig. 22) which represents the cost model of a serverless PaaS.
• FreeQuota (see Fig. 22) which refers to the free quota per month that is associated with an account in the

serverless PaaS.
• Limits (see Fig. 22) which represents the set of limitations that are associated with a serverless PaaS.

Fig. 22 - PaaS high-level and Serverless classes

In Fig. 23, we provide all the details and extensions of the Serverless class in a UML class diagram.

D1.1 Data, Cloud Application & Resource Modelling

Page 41

Fig. 23 - UML class diagram showing the serverless class hierarchy

The extensions in the PaaS class also involved significant extensions in the Security Controls class. Specifically, the
subclasses SecurityConfiguration and HardwareBasedSecurity were introduced (see Fig. 24). The first refers to all the
aspects of configurations over a network entity that is specified through a set of network access rules (defined as a
separate subclass called NetworkAccessRule). The latter aggregates all the security capabilities that can be offered as a
service through dedicated hardware components. The HardwareBasedSecurity involves the following subclasses:

• FPGASecurity (see Fig. 24) which refers to the security capabilities implanted in a FPGA hardware.
• SecureEnclave (see Fig. 24) which refers to the capability of a trusted execution environment based on

dedicated microkernels that support isolation and encryption.

D1.1 Data, Cloud Application & Resource Modelling

Page 42

Fig. 24 - PaaS high-level as well as SecurityConfiguration and HardwareBasedSecurity classes

In Fig. 25, we provide the extensions regarding the SecurityControls class in a UML class diagram.

Fig. 25 - UML class diagram showing the Security Control class hierarchy

4.1.4 Big Data
Also, a number of important extensions were introduced in the Big-Data Model part of the MDS. Specifically, in the
Big Data Aspects a number of instances were appended under the Format and Type subclasses of the Data Variety
class. Data Variety refers to the different types of data that should be processed by a Morphemic-enabled cloud
application, stating an increased diversity of data that should be stored, processed or combined. The abstract view of

D1.1 Data, Cloud Application & Resource Modelling

Page 43

this part of MDS is presented in Fig. 26 while the fine-grained details are presented in the UML class diagram of Fig.
27.

Fig. 26 - Big-Data Model high-level as well as DataVariety and Data Location classes

D1.1 Data, Cloud Application & Resource Modelling

Page 44

Fig. 27 - UML class diagram for the big data domain

Besides, smaller additions in the form of new properties were performed in the Data Location class. The details of
these extensions are available in the UML diagram of Fig. 28.

Fig. 28 - UML class diagram covering the location class

Furthermore, extensions were provided in the Data Management class of the Big-Data Model, which encapsulates all
the relevant concepts that can be used in order to describe major technological choices with respect to how big data is
acquired, stored, processed, transferred or replicated for redundancy reasons. The extensions involve both new
subclasses and properties. In Fig. 29, the new high-level view of the Data Management class is provided while Fig. 30
presents the Data Storage class and its new view.

D1.1 Data, Cloud Application & Resource Modelling

Page 45

Fig. 29 - Data Management high-level and Transfer classes

Fig. 30 - The Data Storage class hierarchy

In Fig. 31 and Fig. 32 the fine-grained details of the Data Management and Data Storage classes are presented,
respectively.

D1.1 Data, Cloud Application & Resource Modelling

Page 46

Fig. 31 - The UML class diagram of the Data Management class hierarchy

Fig. 32 - The UML class diagram of the Data Storage class hierarchy

D1.1 Data, Cloud Application & Resource Modelling

Page 47

4.2 Implementation
The MDS was developed and extended in iterations, starting with an analysis of the available vocabularies and
ontologies related to data-aware multi-cloud computing [18] and continued with an investigation of the advanced
requirements of the Morphemic use cases [4]. For the representation of a comprehensible overview of MDS, we used
a free, HTML5-compliant mind mapping webapp10 with cloud support. The detailed mind map produced for the MDS
can be used for an easier walkthrough of the Schema’s main aspects and extensions and can be found here11. MDS
was also serialized in XMI12. The serialization used was decided based on the fact that this vocabulary should be
properly specified in one Ecore-based language encoding form so as to enable the re-use of its elements for annotating
CAMEL models. We note that the reader may find the serialization of the complete model here13. This serialization
took place by using the Metadata Schema editor which a graphical web-based tool that has been developed in the
context of the Melodic project, in order to enable the creation, modification and management of MDS. This editor has
been implemented in Java and is publicly available here14.

5 Use-Case Modelling

The Morphemic project involves three use-case partners who plan to exploit the Morphemic platform in order to
support the polymorphic modelling and adaptive provisioning of their applications. One of these partners is IS-
Wireless, which has the ambition to deploy and adaptively provision its use-case application, exploiting 5G Software-
defined Radio Access Networks (RAN), in cloud and hybrid (cloud & edge) environments. This use-case application
has created particular requirements on both CAMEL and MDS in terms of relevant extensions so it is a suitable
candidate for demonstration purposes. Concerning CAMEL and especially CAMEL 3.0 it has led to creating the
notion of communication requirement, while it has guided the extension of MDS concerning the network domain and
the introduction of relevant network QoS attributes.
This use-case application is still in development and will incorporate relevant scenarios that showcase the new
features to be exhibited by the Morphemic platform. As such, to demonstrate CAMEL 3.0 in this deliverable, we have
taken the basic scenario of cloud deployment with no optimisation objectives. This scenario already involves all the
relevant application components as well as most of the requirements concerning resources, location, communication
QoS and service level objectives (SLOs). In this respective, it is a very good candidate in order to showcase some
CAMEL extensions like the one related to the modelling of communication requirements.
A RAN system comprises various protocols like the MAC (Medium Access Control) one. Many of these protocols can
be actually virtualised and situated in different locations. A Cloud RAN can comprise three main units on which the
different protocols are distributed: the Radio Unit (RU) comprising low-level protocols, the Distributed Unit (DU)
comprising intermediate-level protocols and the Central Unit (CU) comprising high-level protocols. The first unit, the
RU one is tightly connected to a physical location (actually a cell site), while the actual location of the other units can
vary as they can be virtualized in the form of virtual network functions (VNF). As such, the other units are amenable
for management by the Morphemic platform. The CU unit can be also separated into the control (CP) and user plane
(UP) such that the respective parts, i.e., CU-CP and CU-UP can be independently managed and deployed.
For the static deployment scenario, various kinds of requirements have been considered, some of which can be
considered as generic while others communication-specific. The generic requirements are the following:

• the location of all components should be determined on a regional/country level granularity (e.g.
deployment should be done in Poland)

• each component has the requirements of 5 as minimum number of cores and 2 as the number of GBs for the
RAM

• the application average availability should be at least 99.999%
The communication-specific requirements concern the quality of the communication between pairs of components.
These are the following:

• The latency between DU and CU-CP should be at most 5 (milliseconds) while the throughput at least 0.1
Gbps. This holds for both directions of communication

• The latency between DU and CU-UP should be at most 1 (millisecond) while the throughput at least 4 Gbps.
Again, this holds for both communication directions

10 https://app.mindmapmaker.org/
11 https://melodic.cloud/UuTf-KRW.png
12 http://www.omg.org/spec/XMI/
13 https://gitlab.ow2.org/melodic/camel/-/tree/rc3.1/metadata-schema/current
14 https://bitbucket.7bulls.eu/projects/MEL/repos/metadata-schema/browse/muse

D1.1 Data, Cloud Application & Resource Modelling

Page 48

Based on the above requirements and the main structure of the application that will be visible to a Morphemic
platform instance, the respective CAMEL 3.0 model of the RAN application has been developed and will be presented
in a step-wise manner by explicating the main content per each domain of CAMEL covered. The content will be
demonstrated by considering the textual syntax of CAMEL.
The first snippet of this model is shown in the following figure where the focus in on the application domain. As it can
be seen, the CAMEL model includes a single component that represents the whole application. This component has a
specific version and is long-lived. It is realised via an application model that involves three main components and their
communication between them. Each of the components is mainly deployed through a script-based configuration, the
details of which are not shown as it is considered as private information about the use-case that cannot be published.
In addition, each application component has one required hosting port as well as 2 provided and 2 required
link/communication ports. In the same model, there is a definition of a global set of requirements (i.e., this set holds
for all application components) which includes references to the generic requirements about the component location
and the demanded amount of resources. The actual requirements are specified in the requirement model of this
application. Finally, a set of four communications with their quality requirements are described that connect the
required and provided communication ports of the application components so as to cover the communication between
DU and CU-CP as well as DU and CU-UP in both directions.

Fig. 33 - Snippet of the application's CAMEL model focusing on the deployment domain

D1.1 Data, Cloud Application & Resource Modelling

Page 49

The next snippet shows the requirement, metric type and constraint models of the RAN application. The requirement
model includes two link requirements covering the quality of communication between DU and CU-CP as well as
between DU and CU-UP. Each communication requirement involves the specification of two attributes that define the
respective constraints on communication latency and throughput. As it can be easily seen, both attributes are annotated
via the use of the MDS to point to the right network QoS data properties.
The requirement model also involves one resource requirement that is to be applied to all application components.
This resource requirement covers the specification of constraints on two attributes, annotated with MDS relevant data
properties, which are the RAM and minimum number of cores ones.
The requirement model ends with the specification of a location and SLO requirement. The location requirement
explicates the actual location of the application components, which is Poland, while the SLO requirement is associated
with a specific constraint on average application availability. Please note that the location of Poland is drawn from a
location model which involves a physical location hierarchy of three levels: continent, sub-continent and countries.
This location model can be put in the respective Eclipse environment of the CAMEL textual editor in order to be re-
used in the context of application modelling in CAMEL.
Similarly, the metric type model re-uses already specified CAMEL elements, in particular availability-based metrics,
from a metric (template) model. As such, it only involves the specification of a composite metric context which
explicates the actual metric to be computed (average application availability) as well as the way the measurements of
the downstream metric (i.e., raw application availability) can be aggregated to produce the measurements of this
composite availability metric. Other contextual details are not specified as we cover the whole application and not its
components (i.e., object context is not required) and as these can be inferred by the platform itself (e.g., composite
metric computation frequency).
The application’s CAMEL model ends with the specification of a small constraint model that poses the constraint on
average application availability to be at least 99.999%. This is the constraint that is used for the specification of the
sole SLO in the application’s requirement model.

D1.1 Data, Cloud Application & Resource Modelling

Page 50

Fig. 34 - Snippet of application's CAMEL model covering the requirement, metric and constraint domains

Thus, as it can be easily inferred, CAMEL 3.0 and enhanced MDS were able to cover the complete modelling of the
static scenario of the RAN use-case of IS-Wireless thanks to the slight extensions conducted on CAMEL 2.0 (with
respect to the communication requirement specification) as well as on the MDS (with respect to the network domain).
The dynamic scenario of this use-case is still under development and will exploit the Morphemic Preprocessor
features corresponding to the polymorphic proactive and reactive adaptation. Potentially, its complete modelling in
CAMEL 3.0 could be shown in the next edition of this deliverable, which will cover the improvements on CAMEL
3.0 and MDS based on the partner feedback as well as full demonstrations of CAMEL & MDS to explicate their
enhanced expressiveness power.

6 Conclusions & Future Work

This deliverable has attempted to explain all the modelling enhancements that have been achieved in the Morphemic
project with the main aim to support the complete modelling of polymorphic applications, including the coverage of

D1.1 Data, Cloud Application & Resource Modelling

Page 51

proactive adaptation aspects. Such enhancements came with the extension of two related modelling frameworks, the
CAMEL language and the Metadata Schema (MDS) ones.
In case of CAMEL, a new version called CAMEL 3.0 has been produced that enables to completely model multi-
cloud polymorphic applications by satisfying all relevant requirements as were introduced in section 3.1.1. This is a
preliminary version that might be modified in the near future so as to accommodate relevant feedback from both the
technical and use-case partners of the Morphemic project. Thus, the potential evolution of this language along with a
complete example of its modelling in terms of an advanced, polymorphic-enabled scenario of a use-case will be
covered in the next version of this deliverable, which is named as D1.3 “Final Data, Cloud Application & Resource
Modelling”. That deliverable will also cover complete pointers to all relevant CAMEL v3.0 sources (documentation,
examples, presentations, relevant platform implementation details, etc.) in order to enable also an external audience to
fully comprehend CAMEL and become capable of modelling polymorphic multi-cloud applications through this
language.
The MDS schema was already quite rich when its current version has been produced in the context of the Melodic
project, properly covering basic cloud resource and service types as well as multiple data management aspects.
However, in the context of polymorphic application modelling as well as supporting all use-case applications of the
project with some domain-specific peculiarities, MDS has been extended in order to cover a richer set of resources,
including now HPC, edge and hardware-accelerated ones, as well as the network domain, quite relevant for the
Morphemic use-cases, enabling to include those concepts that are necessary to support network-aware application
deployment, such as those related to communication quality. MDS will be evaluated in the context of the project use-
cases and might be enhanced to cover additional concepts and properties, if this becomes necessary. All additional
MDS enhancements as well as corresponding changes will be incarnated in the next version of this deliverable, i.e.,
the D1.3 deliverable.
To this end, the forthcoming deliverable will cover the final versions of both modelling frameworks which will surely
enable the complete modelling and consequent adaptation of polymorphic, multi-cloud applications that might also
include data-intensive tasks. Such frameworks already advance the competition and pave the way for additional
advancement in the context of cloud application modelling.

D1.1 Data, Cloud Application & Resource Modelling

Page 52

7 References

[1] K. Kritikos, P. Skrzypek, and F. Zahid, “Are Cloud Platforms Ready for Multi-cloud?,” in Service-Oriented and
Cloud Computing, vol. 12054, A. Brogi, W. Zimmermann, and K. Kritikos, Eds. Cham: Springer International
Publishing, 2020, pp. 56–73.

[2] A. P. Achilleos et al., “The cloud application modelling and execution language,” J Cloud Comp, vol. 8, no. 1, p.
20, Dec. 2019, doi: 10.1186/s13677-019-0138-7.

[3] Y. Verginadis, I. Patiniotakis, and G. Mentzas, “Metadata Schema for Data-Aware Multi-Cloud Computing,” in
2018 Innovations in Intelligent Systems and Applications (INISTA), Thessaloniki, Jul. 2018, pp. 1–9, doi:
10.1109/INISTA.2018.8466270.

[4] Ciro Formisano, Robert Gdowski, Adeliya Latypova, Ferath Kherif, and Sebastian Geller, “D6.1 Industrial
requirements analysis,” Morphemic Project Deliverable, 2020.

[5] Brice Morin, Olivier Barais, Jean-Marc Jézéquel, Franck Fleurey, and Arnor Solberg, “Models@run.time to
Support Dynamic Adaptation,” Computer, vol. 42, no. 10, pp. 44–51, 2009, doi: 10.1109/MC.2009.327.

[6] C. Chapman, W. Emmerich, F. G. Márquez, S. Clayman, and A. Galis, “Software architecture definition for on-
demand cloud provisioning,” Cluster Comput, vol. 15, no. 2, pp. 79–100, Jun. 2012, doi: 10.1007/s10586-011-
0152-0.

[7] A. J. Ferrer et al., “OPTIMIS: A holistic approach to cloud service provisioning,” Future Generation Comp.
Syst., vol. 28, no. 1, pp. 66–77, 2012, doi: 10.1016/j.future.2011.05.022.

[8] X. Etchevers, T. Coupaye, F. Boyer, and N. de Palma, “Self-Configuration of Distributed Applications in the
Cloud,” in 2011 IEEE 4th International Conference on Cloud Computing, Washington, DC, USA, Jul. 2011, pp.
668–675, doi: 10.1109/CLOUD.2011.65.

[9] D. K. Nguyen, F. Lelli, M. P. Papazoglou, and W.-J. van den Heuvel, “Blueprinting Approach in Support of
Cloud Computing,” Future Internet, vol. 4, no. 1, pp. 322–346, Mar. 2012, doi: 10.3390/fi4010322.

[10] D. Palma and T. Spatzier, “Topology and Orchestration Specification for Cloud Applications (TOSCA),”
Organization for the Advancement of Structured Information Standards (OASIS), Jun. 2013. [Online].
Available: http://docs.oasis-open.org/tosca/TOSCA/v1.0/cos01/TOSCA-v1.0-cos01.pdf.

[11] G. C. Silva, L. M. Rose, and R. Calinescu, “Cloud DSL: A language for supporting cloud portability by
describing cloud entities,” CEUR Workshop Proceedings, vol. 1242, pp. 36–45, 2014.

[12] V. Andrikopoulos, A. Reuter, S. Gómez Sáez, and F. Leymann, “A GENTL Approach for Cloud Application
Topologies,” in Advanced Information Systems Engineering, vol. 7908, C. Salinesi, M. C. Norrie, and Ó. Pastor,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014, pp. 148–159.

[13] D. Ardagna et al., “MODACLOUDS, A Model-Driven Approach for the Design and Execution of Applications
on Multiple Clouds,” in ICSE MiSE: International Workshop on Modelling in Software Engineering, 2012, pp.
50–56.

[14] A. Bergmayr, U. Breitenbücher, O. Kopp, M. Wimmer, G. Kappel, and F. Leymann, “From Architecture
Modeling to Application Provisioning for the Cloud by Combining UML and TOSCA:,” in Proceedings of the
6th International Conference on Cloud Computing and Services Science, Rome, Italy, 2016, pp. 97–108, doi:
10.5220/0005806900970108.

[15] F. Chauvel et al., “Definition of the ARCADIA context model,” Arcadia project deliverable D2.2, Jul. 2015.
[16] M. Hamdaqa and L. Tahvildari, “Stratus ML: A Layered Cloud Modeling Framework,” in 2015 IEEE

International Conference on Cloud Engineering, Tempe, AZ, USA, Mar. 2015, pp. 96–105, doi:
10.1109/IC2E.2015.42.

[17] K. Kritikos et al., “Multi-cloud provisioning of business processes,” J Cloud Comp, vol. 8, no. 1, p. 18, Dec.
2019, doi: 10.1186/s13677-019-0143-x.

[18] Yiannis Verginadis, Ioannis Patiniotakis, Christos Chalaris, Gregoris Mentzas, Kyriakos Kritikos, and Keith
Jeffery, “D2.4 Metadata schema,” Melodic Project Deliverable, Nov. 2017.

[19] T. Fitz, M. Theiler, and K. Smarsly, “A metamodel for cyber-physical systems,” Advanced Engineering
Informatics, vol. 41, p. 100930, Aug. 2019, doi: 10.1016/j.aei.2019.100930.

[20] Alessandra De Paola, Luca Gatani, Giuseppe Lo Re, Alessia Pizzitola, and Alfonso Urso, “A Network Ontology
for Computer Network Management,” Consiglio Nazionale delle Ricerche, Palermo, Italy, Technical Report RT-
ICAR-PA-03-22, 2003.

[21] K. G. Kyriakopoulos, D. J. Parish, and J. N. Whitley, “FlowStats: An ontology based network management
tool,” in 2015 Second International Conference on Computing Technology and Information Management
(ICCTIM), Johor, Malaysia, Apr. 2015, pp. 13–18, doi: 10.1109/ICCTIM.2015.7224586.

[22] Andriy Luntovskyy, Taissia Trofimova, Natalia Trofimova, Dietbert Gütter, and Alexander Schill, “To a
Proposal towards Standardization of Network Design Markup Language,” Dresden, Germany, 2007.

D1.1 Data, Cloud Application & Resource Modelling

Page 53

[23] Q. Zhou, A. J. G. Gray, and S. McLaughlin, “ToCo: An Ontology for Representing Hybrid Telecommunication

Networks,” in The Semantic Web, vol. 11503, P. Hitzler, M. Fernández, K. Janowicz, A. Zaveri, A. J. G. Gray,
V. Lopez, A. Haller, and K. Hammar, Eds. Cham: Springer International Publishing, 2019, pp. 507–522.

[24] M. A. Rahman, A. Pakstas, and F. Z. Wang, “Towards Communications Network Modelling Ontology for
Designers and Researchers,” in 2006 International Conference on Intelligent Engineering Systems, London, UK,
2006, pp. 258–263, doi: 10.1109/INES.2006.1689380.

[25] A. Uzun and A. Küpper, “OpenMobileNetwork: extending the web of data by a dataset for mobile networks and
devices,” in Proceedings of the 8th International Conference on Semantic Systems - I-SEMANTICS ’12, Graz,
Austria, 2012, p. 17, doi: 10.1145/2362499.2362503.

[26] J. J. van der Ham, “A semantic model for complex computer networks: the network description language,”
[s.n.], S.l, 2010.

[27] X. Qiao, X. Li, and J. Che, “Telecommunications Service Domain Ontology: Semantic Interoperation
Foundation of Intelligent Integrated Services,” in Telecommunications Networks - Current Status and Future
Trends, J. Ortiz, Ed. InTech, 2012.

[28] SAKTHI MURUGAN, P. SHANTHI BALA, and G. AGHILA, “An Ontology for Exploring Knowledge in
Computer Networks,” International Journal on Computational Sciences & Applications (IJCSA), vol. 3, no. 4,
2013.

[29] G. G. Castañé, H. Xiong, D. Dong, and J. P. Morrison, “An ontology for heterogeneous resources management
interoperability and HPC in the cloud,” Future Generation Computer Systems, vol. 88, pp. 373–384, Nov. 2018,
doi: 10.1016/j.future.2018.05.086.

[30] A. Zhou, K. Ren, X. Li, W. Zhang, and X. Ren, “Building Quick Resource Index List Using WordNet and High-
Performance Computing Resource Ontology towards Efficient Resource Discovery,” in 2019 IEEE 21st
International Conference on High Performance Computing and Communications; IEEE 17th International
Conference on Smart City; IEEE 5th International Conference on Data Science and Systems
(HPCC/SmartCity/DSS), Zhangjiajie, China, Aug. 2019, pp. 885–892, doi:
10.1109/HPCC/SmartCity/DSS.2019.00129.

[31] C. Kessler, L. Li, A. Atalar, and A. Dobre, “XPDL: Extensible Platform Description Language to Support
Energy Modeling and Optimization,” in 2015 44th International Conference on Parallel Processing Workshops,
Beijing, China, Sep. 2015, pp. 51–60, doi: 10.1109/ICPPW.2015.17.

[32] Object Management Group, “UML Profile for MARTE: Modeling and Analysis of Real-Time Embedded
Systems,” Object Management Group (OMG), OMG Document formal/2009-11-02, 2009. [Online]. Available:
https://www.omg.org/spec/MARTE/1.0/PDF.

[33] Imran Rafiq Quadri, Samy Meftali, and Jean-Luc Dekeyser, “A Model based design flow for Dynamic
Reconfigurable FPGAs,” International Journal of Reconfigurable Computing, 2019.

[34] A. P. Achilleos et al., “The cloud application modelling and execution language,” J Cloud Comp, vol. 8, no. 1, p.
20, Dec. 2019, doi: 10.1186/s13677-019-0138-7.

[35] J. Domaschka, F. Griesinger, D. Baur, and A. Rossini, “Beyond Mere Application Structure Thoughts on the
Future of Cloud Orchestration Tools,” Procedia Computer Science, vol. 68, pp. 151–162, 2015, doi:
10.1016/j.procs.2015.09.231.

[36] Yiannis Verginadis et al., “D2.2 Architecture and Initial Feature Definitions,” Melodic Project Deliverable, Feb.
2018.

D1.1 Data, Cloud Application & Resource Modelling

Page 54

Appendix I

In this appendix, we provide all the details of the main MDS classes, subclasses and properties that were considered
for extensions as part of the advanced requirements and capabilities of the MORPHEMIC platform. We have used
different font colour to highlight the updates introduced in MDS as part of this work.

Table 4: Extensions of the Iaas/Processing Class with respect to CPU and HPC classes

 Class Taxonomy Levels Properties Description
IaaS This class encapsulates all the attributes

related to cloud infrastructural resources that
are required and offered for deploying
Morphemic-enabled applications. It reuses and
extends the requirement model of CAMEL
(Rossini et al., 2015).

 Processing This class involves any infrastructural feature
bound to the processing capability of
virtualised resources.

 hasPower
Consumption

This data property refers to the estimated
consumption of electricity required for
processing.

 hasProcessingCos
t

This data property refers to the estimated cost
for processing

 hasProcessingNo
deLocation

This object property has range the Location
class (of the Security Context Element) to
define the physical or network of the
processing node.

 CPU This class refers to IaaS resources that use
Central Processing Units (CPUs) for carrying
out software instructions that specify the basic
arithmetic, logical, control and input/output
(I/O) operations.

 hasCPU
Utilization

This property associates the CPU class with a
double that represents the current percentage
of use for a certain processing unit.

 hasMIPs This property associates the CPU class with an
integer that expresses million instructions per
second as a measure of processing speed
supported by a certain IaaS resource.

 hasMFLOPs This property associates the CPU class with an
integer that represents the capability for mega
floating-point operations per second.

 has Manufacturer This property expresses as a string the
manufacturer of the certain processing unit.

 hasMin Numberof
Cores

This property denotes an integer that captures
the minimum number of CPU cores available
or requested.

 hasMax Numberof
Cores

This property denotes an integer that captures
the maximum number of CPU cores available
or requested.

 hasFrequency This property captures the CPU performance
as it specifies the operating frequency of the
CPU cores, expressed in cycles per second. It
associates the CPU class with an integer value.

 hasPipeline
Number

The number of pipelines per core included in
this processor

 hasStages
Number

The number of (processing) stages per pipeline
involved in this processor

 hasALU Number The number of ALUs (Arithmetic Logic
Units) within this processor

D1.1 Data, Cloud Application & Resource Modelling

Page 55

 hasCaches The range of this object property is the Cache

class in order to define the set of caches
involved in the processor

 HPC This class refers to the high performance
features provided by the computing platform
which can boost the overall performance of the
application

 CPU
pinning

 This class denotes capability of the platform to
associate guest virtual CPUs with hosts
physical CPUs

 hasCPinning
Policy

This property is an enumeration of possible
associations between vCPUs in guest and the
pCPUs in the host. The acceptable values are:
• DEDICATED: Virtual CPUs are pinned

to physical CPUs
• SHARED: Multiple VMs may share the

same physical CPUs
• ANY: (Default) Any policy is acceptable

 CPU
thread
pinning

 This class enables utilization of thread pinning
functionality

 hasTPinning
Policy

This property describes how to place the guest
CPUs when the host supports hyper threads.
The acceptable values are:
• AVOID: Avoids placing a guest on a host

with threads.
• SEPARATE: Places vCPUs on separate

cores and avoids placing two vCPUs on
two threads of same core.

• ISOLATE: Places each vCPU on a
different core and places no vCPUs from
different guests on the same core.

• PREFER: Attempts to place vCPUs on
threads of the same core.

 Huge
pages

 This class describes the capability to allocate
different size of memory pages

 hasPageSize This property is an enumeration of possible
sizes of allocated memory pages:
• LARGE: Require hugepages (either 2MB

or 1GB)
• SMALL: Doesn't require hugepages
• SIZE_2MB: Requires 2MB hugepages
• SIZE_1GB: Requires 1GB hugepages
• PREFER_LARGE: Application prefers

hugepages

 PCIe
device

 This class refers to the direct and exclusive
access of the VM to the PCI device(s) via PCI
passthrough capability

 hasDeviceID This property describes the targeted device by
its ID

 hasNumber This property denotes the number of devices
of the same ID to be attached to the VM

 NUMA
policy

 This class defines a non-uniform memory
access (NUMA) topology of the guest.
Specifically identifies if the guest should be
run on a host with one NUMA node or
multiple NUMA nodes.

D1.1 Data, Cloud Application & Resource Modelling

Page 56

 hasNodeCount This property expresses the number of NUMA

nodes to be exposed to the VM.
 NUMA

node
 This class specifies the characteristics of a

Numa node
 hasNodeID This property denotes the NUMA node ID
 hasvCPU This property denotes the list of VPCUs to

allocate on this NUMA node.
 hasMemory This property denotes the memory size

expressed in MB for this NUMA node.

Table 5: Extensions of the Iaas/Processing Class with respect to Memory classes

 Memory Represents any kind of memory that
can be used for storage or
processing purposes

 hasMemory Size The actual size of the memory
 has Address Size The size of the address (space) in

the memory
 hasMemory

Throughput
The throughput supported by the
memory

 hasClock
Frequency

The clock frequency of the memory

 ProcessingMe
mory

 A memory that can be used for
processing purposes

 hasReplicationPoli
cy

The replication policy (e.g., LRU,
NFU) adopted by this processing
memory

 hasWritePolicy The write policy (e.g., write back or
write through) adopted by this
processing memory

 Cache A kind of extremely fast processing
memory that acts as a buffer
between the RAM and the CPU. It
actually holds frequently requested
data and instructions so that they
can be immediately available to the
CPU when requested

 hasLevel The actual level of the cache
(memory)

 hasCacheType The type of the cache (e.g., data,
instruction, unified, etc.)

 Cache
Structure

 This subclass refers to the structure
of a cache memory

 hasSetNumber The number of sets (i.e., groups of
blocks)

 hasBlockSize The size of the cache memory
blocks

 hasAssociativity The associativity of the cache
 RAM This class corresponds to A kind of

processing memory that can be read
and written in any order. It is
typically exploited for the storage of
working data and machine code.

 hasFreeMemory This property associates the RAM
class with a value expressed in
double-precision floating-point
format (double) that denotes the
amount of unused memory currently
available by the virtualised
resource.

 hasUsedMemory This property associates the RAM

D1.1 Data, Cloud Application & Resource Modelling

Page 57

class with a value expressed in
double format that denotes the
amount of used memory in the
virtualised resource.

 hasManufacturer This property associates the RAM
class with a string that denotes the
producer of the hardware.

 isSynchronous Indicates whether the RAM is
synchronous (i.e., clocked) or not

 isStatic Indicates whether the RAM is static
or dynamic

 isNonVolatile Indicates whether the RAM is non-
volatile

 hasRAMType The type of the RAM (e.g., SRAM,
DRAM, etc.)

 Total
Memory

 This subclass captures the desired
or offered value of the virtualised
storage dedicated for frequent
program instructions.

 hasMin This property associates the Total
Memory class with an integer that
represents the least amount of
memory capacity required or
offered.

 hasMax This property associates the Total
Memory class with an integer that
represents the largest amount of
memory capacity required or
offered.

 hasUnit This property associates the Total
Memory class with a string that
represents the measurement module
of the memory capacity.

 MemoryOrga
nisation

 The organisation of a memory. A
memory is usually organised under
banks of rows and columns of
words.

 hasRowNumber The number of rows
 hasColumn

Number
The number of columns

 hasBank Number The number of banks
 hasWordSize The size of words
 Storage

Memory
 A memory utilised for (permanent)

storage purposes.
 ROM A kind of storage, read-only

memory which is non-volatile. The
data stored in a ROM cannot be
electronically modified after the
production of the memory device

 hasMemory
Organisation

This object property associates with
the Memory Organisation class to
define the organisation aspects of
this ROM memory

 hasROMType The type of the ROM (e.g., masked,
EPROM, etc.)

 Drive A kind of mass storage memory that
can take various forms like hard
disk drives and optical disk drives

 hasSectorSize The size of sectors in the drive

D1.1 Data, Cloud Application & Resource Modelling

Page 58

Table 6: Extensions of the Iaas/Processing Class with respect to Accelerator class

 Accelerator This class refers to application-
specific hardware designed or
programmed to compute
operations faster than a general-
purpose computer processor.

 GPU This class refers to IaaS
resources that use graphics
processing units (GPUs), i.e.
specialized electronic circuits
initially designed to rapidly
manipulate and alter memory to
accelerate the creation of images
in a frame buffer.

 hasStart
UsageDate

This property denotes the date
when a certain GPU began to
operate. It can be used as an
attribute that reveals how new
the processing units used by a
certain IaaS resource are.

 has Manufacturer This property expresses as a
string the manufacturer of the
processing unit.

 hasMFLOPs This property associates the
GPU class with an integer that
represents the capability for
mega floating-point operations
per second, which is a common
measure of processing speed.

 hasPEperCUs This property expresses with an
integer the number of processing
elements per compute units that
a certain GPU offers.

 hasWarpSize This property expresses as an
integer the number of threads
supported to coalesce memory
access and instruction dispatch.

 hasMax
Concurrent
Workgroups

This property denotes an integer
that represents the maximum
work-groups that may be
simultaneously executed on
compute units supported by a
certain GPU.

 hasMin
Numberof Cores

This property denotes an integer
that captures the minimum
number of GPU cores available
or requested.

 hasMax
Numberof Cores

This property denotes an integer
that captures the maximum
number of GPU cores available
or requested.

 hasGPUtype The type of the GPU (e.g.,
integrated, dedicated, hybrid,
etc.)

 hasVMSharing Indicates whether the GPU can
be shared among multiple VMs

 has Architecture The kind of architecture
involved in the GPU (e.g.,
AMD_SOUTHERN_ISLANDS)

 hasSIMD The number of SIMDs (Single

D1.1 Data, Cloud Application & Resource Modelling

Page 59

PerCore Instruction, Multiple Data) per
core in the GPU

 hasScalarUnitNu
mber

The number of scalar units in the
GPU

 hasCache
Coherence Level

The cache coherence level in the
GPU

 hasALUPer
SIMD

The number of ALUs per SIMD
in the GPU

 hasFPUPer
SIMD

The number of FPUs per SIMD
in the GPU

 hasSupported
APIs

The APIs supported by the GPU
(e.g., CUDA, OpenGL, etc.)

 hasTDP Stands for Thermal Design
Power and maps to the
maximum amount of heat the
core of the GPU generates under
intense workload

 hasTBP Stands for Total Board Power
and maps to the maximum
amount of total heat that the
whole GPU board (including
auxiliary systems) generates
under intense workload

 hasBusWidth The width of the bus in the GPU
 hasAverage

Component
FeatureSize

The average feature size across
the components of the GPU

 hasDieSize The size of the die in the GPU
 hasTransistorNu

mber
The number of transistors in the
GPU

 GPUPerformance This class encapsulates all the
aspects that characterize the
running status of a GPU

 hasGPU
Utilization

This property associates the
GPU class with a double that
represents the current percentage
of use for a certain processing
unit.

 hasClock Speed This property captures the GPU
operating speed expressed in
cycles per second. It associates
the GPU class with an integer
value.

 hasCompute
Capability

The compute capability of the
GPU in terms of the feature
supported by the CUDA
hardware. There are actually
respective levels that can be
mapped to double values starting
from 1.0.

 hasMillion
Shader
OperationsPerSe
cond

Amount of million shader
operations per second that can be
reached through this GPU

 hasMillionTexels
PerSecond

Amount of million texels (i.e.,
pixels in 3 dimensions) per
second that can be rendered by
the GPU

 hasMillion
VerticesPer
Second

Amount of million vertices per
second that can be processed by
the GPU

D1.1 Data, Cloud Application & Resource Modelling

Page 60

 hasMillion

PixelsPer Second
Amount of million pixels per
second that can be processed by
the GPU

 hasMaxBoost
Clock Frequency

The maximum clock frequency
on which the GPU can operate
that can lead to maximizing its
performance

 FPGA This class refers to IaaS
resources that use field
programmable gate arrays
(FPGAs), as integrated circuits
made to be configured by the
user after manufacturing.

 hasStart
UsageDate

This property denotes the date
when a certain FPGA began to
operate. It can be used as an
attribute that reveals how new
the processing units used by a
certain IaaS resource are.

 has
Manufacturer

This property expresses as a
string the manufacturer of the
FPGA.

 hasName This property expresses as a
string the name of the FPGA
board.

 hasVersion This property expresses as a
string the version of the FPGA
shell.

 hasList
Accelerators

This property associates the
FPGA class with a list of strings,
being the names of the
accelerators in the current
bitstream loaded

 hasLogical
BlockNumber

The number of logical blocks in
the FPGA

 hasCellsPer
Block

The number of cells per (logical)
block in the FPGA

 hasClock
Number

The number of clocks in the
FPGA

 has Components A set of components that
comprise or connect with this
FPGA. Such components could
take the form of multi-gigabit
tranceivers, ethernet medium
ACUs, interconnect bridges, etc.

 hasIOBlock
Number

The number of IO blocks in the
FPGA

 hasDSPBlock
Number

The number of DSP (Digital
Signal Processor) blocks in the
FPGA

 hasDSP
Architecture
Features

The features exhibited by the
adopted DSP architecture in the
FPGA. Such features can be
fixed-point arithmetic, multiple
data memories, MAC support,
etc.

 hasIOBlock
Number

The number of IO blocks in the
FPGA

 hasAnalog
Features

The analog features in the
FPGA, such as quartz crystal
oscillators and slew rate output
pins.

D1.1 Data, Cloud Application & Resource Modelling

Page 61

 hasSecurity This object property associates

with the FPGASecurity class
(subclass of
HardwareBasedSecurity) in
order to define the security
characteristics of the FPGA.

 FPGAMemory This subclass is used to describe
the memory capacity of FPGA
accelerators involved.

 hasTotalFPGAM
emory

This property associates the
Memory class with an integer
that represents the total amount
of memory capacity required or
offered.

 hasUnit This property associates the
Memory class with a string that
represents the measurement
module of the memory capacity.

 hasMemory
Consumption

This property associates FPGA
class with a double that
represents the current percentage
of memory used for a certain
FPGA board.

 hasRAMBlockN
umber

This property refers to the
number of RAM blocks in the
FPGA.

 hasExternal
Memories

This object property associates
the FPGAMemory with the
RAM class in order to express
the set of external memories
utilised by the FPGA.

 FPGA
Performance

 This subclass encapsulates the
measured capabilities of a
certain FPGA board based on its
current usage.

 hasWaiting Time This property associates FPGA
class with and integer that
represents the requests waiting in
a specific accelerator’s queue to
be executed

 hasReadTime This property associates FPGA
class with a double that
represents the time taken to copy
data from host memory to the
FPGA double data rate (DDR)
for a specific accelerator.

 hasExecute Time This property associates a FPGA
class with a double that
represents the time taken to
execute a request on a specific
FPGA accelerator.

 hasWriteTime This property associates a FPGA
class with a double that
represents the time taken to copy
data from FPGA DDR to host
memory for a specific
accelerator.

 Status This subclass encapsulates
aspects about the current status
of a certain FPGA board.

 hasRunning This property associates FPGA
class with an integer (1-3) that

D1.1 Data, Cloud Application & Resource Modelling

Page 62

represents which stages (read –
write - execute) of a specific
accelerator’s software
pipelinening are active

 hasPower
Consumption

This property associates the
FPGA class with an integer that
represents the current power
consumption in watts (W).

 has Temperature This property associates the
FPGA class with an integer that
represents the current
temperature of the FPGA die in
degrees Celsius (C).

 FPGAHardCore A kind of FPGA whose logic
includes hard-macro processors

 FPGASoftCore A kind of FPGA whose logic
involves the use of soft processor
IP cores

 Heterogeneous
FPGA

 An architecture that involves
multiple FPGA dies stacked side
by side on a silicon interposer.
This architecture enables to
different parts of the FPGA to be
developed according to different
process technologies.

 hasDieNumber The number of dies stacked side
by side on the silicon interposer
of the FPGA

 FPGA
Interconnection

 The interconnection in the FPGA
modelled as a concept with
multiple attributes.

 hasRouting
Channel Number

The number of routing channels
in the FPGA interconnect

 hasRouting
ChannelWidth

The width of each routing
channel in the FPGA
interconnect

 horizontal
Routing Channel
Number

Number of horizontal routing
channels in the FPGA
interconnect

 Vertical Routing
Channel Number

Number of vertical routing
channels in the FPGA
interconnect

 hasConnectionN
umberPer Block

The number of connections per
block in the FPGA interconnect

 hasConnectionBl
ockNumber

The number of connection
blocks in the FPGA interconnect

 hasConnectionT
ype

The types of connections
supported in the FPGA
interconnect

 hasSwitch
BlockNumber

The number of switch blocks in
the FPGA interconnect

 hasRouting
Architecture

The routing architecture adopted
by the FPGA interconnect.
Architectures such as
hierarchical, island style, etc
could be followed.

 hasInterlaken
Support

Support for the interlaken chip-
to-chip interconnect protocol in
the FPGA interconnect

 hasEthernet
Support

Support for the Ethernet protocol
in the FPGA interconnect

 VPU Vision Processing Unit (VPU)

D1.1 Data, Cloud Application & Resource Modelling

Page 63

class refers to a category of
microprocessors intended to
accelerate machine vision
algorithms and tasks.

 hasVPU
Interface

This property refers to the
capability of a VPU to digest
data directly from cameras
bypassing any off-chip buffers.

 hasVPU
Throughput

This property refers to the
possible on-chip data flow
supported between the parallel
execution units.

 ASIC Application-Specific Integrated
Circuit (ASIC) class refers to a
category of hardware
accelerators that employ
strategies such as optimised
memory use and the use of lower
precision arithmetic to accelerate
calculation and increase the
throughput of computation.

 usesFloating
PointFormat

This property clarifies the ow-
precision floating-point formats
that can be used in this ASIC for
supporting the acceleration. The
possible values are:
• Half-precision binary

floating-point computer
number format that occupies
16 bits in memory and can
express values in the range
±65,504, with precision up
to 0.0000000596046.

• bfloat16: it represents a
wide dynamic range of
numeric values by using a
floating radix point and
occupying 16 bits in
computer memory.

 TPU Tensor Processing Unit (TPU)
refers to a class of specialised
custom-made circuits that
implement all the necessary
control and arithmetic logic (e.g.
matrix multiplications) in a way
that accelerates neural network
training.

 hastTPUType This property refers to the kind
of TPU that can be employed.
The possible values are:
• Cloud: TPU pod accessible

from public data centres.
• Edge: custom-built TPUs

for applications that reside
at the edge.

 hasGeneration The generation to which this
TPU belongs (e.g., first, second,
etc.)

D1.1 Data, Cloud Application & Resource Modelling

Page 64

 hasTPU Memory The RAM memory that can be

included in this TPU
 hasOnChip

Memory
The amount of on-chip memory
available in this TPU

 hasTops Stands for tera operations per
second that can be supported by
the TPU

 hasGeneration The generation to which this
TPU belongs (e.g., first, second,
etc.)

Table 7: Extensions of the Iaas/NetworkEntity Class

Class Taxonomy Levels Properties Description
IaaS This class encapsulates all the

attributes related to cloud
infrastructural resources that
are required and offered for
deploying Morphemic-enabled
applications. It reuses and
extends the requirement model
of CAMEL (Rossini et al.,
2015).

 NetworkE
ntity

 This class represents any kind
of network entity that could be
included in a specific cloud

 Network This class refers to the network
related aspects that bind the
operation and communication
capabilities of an offered or a
requested Fog IaaS resource.

 hasNetType The type of the network (e.g.,
mobile, fixed, wired, wireless)

 hasTopology The topology of the network
which can take various forms
(mesh, point2point, start, etc.)

 hasNodes This object property has range
the NetworkNode class to
define the nodes comprising
this network.

 hasServices This object property has range
the Service class (subclass of
SoftwareNetwokEntity) to
define the services (e.g., voice,
video, etc.) offered by this
network

 hasMedia The transmission media (e.g.,
coaxial cable, radio waves, etc.)
used for the communication
within the network

 hasQoS This object property associates
the Network class with the
NetworkQoS class that
comprises a set of well-known
QoS parameters/attributes

 hasScale The scale of the network (e.g.,
MAN, WAN, etc.)

 hasScope This property denotes if a
network resource can initiate
and receive communication
over the internet or the intranet.

D1.1 Data, Cloud Application & Resource Modelling

Page 65

 hasNAT Indication of whether NAT is

supported
 hasIPV4Range The range of IPs (version 4)

that can be used in the network
 hasIPV6Range The range of IPs (version 6)

that can be used in the network
 has

Configurations
A set of (security)
configurations of the network
that map to network access
rules

 has Availability
Zone

This object property associates
the Network class to the
Availability Zone class of the
Big Data Model for denoting
isolated locations used to make
network resources available.

 hasNetwork Cost This property denotes a float
value that expresses the cost for
exploiting the network
resources.

 Sub
Network

 This class represents a
subnetwork configured on
Cloud or Fog network
resources

 IsOnNetwork This property denotes a
network object to be operated
by a given network resource.

 IsIsolatedFrom
Subnetwork

This boolean property
associates with another
subnetwork and assesses
whether or not these two are
isolated (e.g. VLAN).

 Virtual
Private
Cloud
Network

 A virtual private cloud (VPC)
is a kind of a network entity
that refers to the network
access of an on-demand
configurable pool of computing
resources allocated within a
public cloud. It supplies a
certain level of isolation
between the clients of the
respective cloud. Such an
isolation (per client) is
achieved through a private IP
subnet and a virtual
communication construct.

 hasSubnets This property corresponds to
one or more string values that
represent the subnet(s) of an
IaaS resource that comprise a
VPC.

 isExternal Indicates whether the VPC is
external with respect to a
specific cloud. In some cases,
external VPCs can be paired
with one or more internal VPCs
of a cloud.

 PairsWith This object property denotes
the VPC with which it is paired
the current one

 hasElasticIPs The set of elastic IPs offered in
the VPC

D1.1 Data, Cloud Application & Resource Modelling

Page 66

 hasLocation This object property associates

a VPC with the class Location
of the Context Aware Security
Model

 hasRemote
Networks

The set of remote networks that
the VPC can or connects with

 has
Configurations

Set of (security) configurations
of the VPC

 hasTenancy This Boolean data property
indicated whether multi-
tenancy is supported or not
within this VPC.

 Network
QoS

 A class that represents the main
aspects that express the quality
of service of a network

 hasBandwidth This property associates the
Network class with a float
value that states the maximum
throughput of a logical or
physical communication path.
It corresponds to the net bit
rate, channel capacity or the
maximum throughput that can
be conveyed per unit of time.

 hasErrorRate Percentage of bit errors within
a time frame. It could be also
mapped to error packet ratio,
i.e., the number of incorrectly
received packets with respect to
the total received ones (within
a time frame).

 hasJitter Difference in the end-to-end
delay variation between
selected packets in a flow with
any lost packets being ignored

 hasLatency This property associates a float
value with the maximum
latency of a logical
communication path.

 hasThroughput Rate of successful message
delivery over a communication
channel

 hasPacketLoss Percentage of packet loss with
respect to the number of
packets sent (within a particular
time frame/space)

 Software
Network
Entity

 This subclass represents a
software-based network entity

 Queue Represents a network queue
associated to an interface in
which packets can be hosted
while waiting for processing or
transmission

 hasTotalSize The total size of the queue
 hasUsedSpace The percentage of the total

queue size allocated
 Routing

Table
 A table that controls the routing

in the context of a specific
network node

 hasEntries This property refers to the set
of entries/rows of the table

D1.1 Data, Cloud Application & Resource Modelling

Page 67

 isCorrupted Indicates whether one or more

entries of the table have been
corrupted

 Routing
TableEntry

 Represents an entry of a
routing table

 hasDestinationNo
de

This object property has as
range the NetworkNode class
to define the destination node
for the routing

 hasNeighbour
Node

A neighbouring node via which
the traffic could be directed
towards the destination node

 hasCost The cost of using the
neighbouring node to reach the
destination node, i.e., of the
routing path followed

 Service Represents a service that can be
offered by a network

 hasServiceType The type of the offered service
(e.g., basic, value-added, voice
data, etc.)

 hasErrorCode The code of error that can
occur during the use of that
service

 hasService Status The current status of the
service (e.g., running,
unavailable, etc.)

 isConnection Less Indicates whether this is a
connectionless or a connection-
based service

 hasNetwork
Protocols

The set of network protocols on
which this service relies

 System
Software

 Represents the software that
runs in a network node

 Virtual
Node

 A virtual node of the network
that can run on top of a
hardware/physical node

 Routing
Protocol

 A protocol that can be used in
routing

 hasRPType The type of the routing table
(link state, distance vector, etc.)

 Network
Protocol

 System of rules that allow two
or more entities of a
communication system to
transmit information via any
kind of variation of a physical
quantity. Such a protocol
defines the rules, syntax,
semantics and synchronisation
of the communication as well
as possible error recovery
methods.

 hasLayer The relevant layer(s) on the
OSI model where this protocol
applies

 hasProtocol Suite The protocol suite (e.g.,
AppleTalk or Internet Protocol)
to which the protocol may
belong

 Network
Operating
System

 A specialised operating system
to be operated on a network
entity like a router, switch or

D1.1 Data, Cloud Application & Resource Modelling

Page 68

firewall
 HardwareN

etwork
Entity

 This class refers to all the
aspects of hardware-based
network entities that may
constitute network nodes
serving the cloud application
components.

 hasHNStatus The status of the hardware
network entity which can be
on, off or abnormal

 Network
Node

 A physical node of the network

 hasNeighbours A set of neighbouring network
nodes to this node. It is a
recursive object property

 hasRouting Table The routing table exploited for
routing purposes for this node

 hasLocation This object property has as
range the Location class (of the
Security Context Element) in
order to define the (exact)
location of this network node

 hasVirtual Nodes The set of virtual (network)
nodes executed on top of this
(physical) network node

 System
Device

 A system device is a kind of
network node that has a
specific location within a
network and plays a certain
role within it (e.g., bridge, base
station, access point, etc.)

 hasSoftware This object property has range
the SystemSoftware class to
define that a system device
might run specialised system
software

 hasOperating
System

This object property has range
the NetworkOperatingSystem
class to define that a system
device might run a (specialised)
(network) operating system

 Access
Point (one
level down
the System
Device)

 Represents a device that allows
other devices to connect to a
wired network through the use
of wireless LAN technology
such as Wi-Fi. Usually
connects to a router as a
standalone device or can be an
integral component of the
router itself.

 isWifi Indicates whether the Wi-Fi
wireless LAN technology is
utilised by this access point

 hasAssociated
Equipment

This object property has range
the UserEquipment class to
define any associated
equipment to this access point

 hasInRange
Equipment

This object property has range
the UserEquipment class to
define any in-range equipment
to this access point

 hasDriver The driver utilised by this

D1.1 Data, Cloud Application & Resource Modelling

Page 69

access point
 hasOpticalFilterG

ain
The gain involved in the optical
filtering

 hasHalf
IntensityAngle

The half-intensity angle of a
luminous source

 hasResponsivity The input-output gain of a
detector system. There can be
electrical and optimal
responsivity. The electrical
responsivity can be defined as
the detector voltage response
per incident power. The optical
responsivity instead refers to
the radiative coupling and
includes antenna losses, losses
of the feeding network and
impedance mismatch between
the antenna and the transistor.

 Base
Station (one
level down
the System
Device)

 A radio receiver/transmitter
that serves as a hub of a local
wireless network while it might
also be a gateway between a
wired and a wireless network.
Typically consists of a low-
power transmitter and a
wireless router.

 SatelliteRel
ay Station
(one level
down the
SystemD
evice)

 A broadcast transmitter that
repeats the signal of a radio or
television station to an area not
covered by the originating
station.

 Bridge (one
level down
the System
Device)

 A computer networking /
system device that constructs a
single, aggregated network
from multiple communication
networks or network segments

 hasBridgeType The type of a network bridge
(e.g., multi-port, transparent,
etc.)

 Hub (one
level down
the System
Device)

 A system device that connects
multiple Ethernet devices and
making them act as a single
network segment

 hasHubType The type of a hub, such as
active or passive

 Gateway
(one level
down the
System
Device)

 A system device that allows
data to flow from one discrete
network to the other. The
communication can happen
using more than one (network)
protocol while the operation
can occur at any level of the
OSI model. It is also advertised
to provide interoperability
between networks that utilise
different protocols

 hasGateway Type The type of a gateway (e.g.,
synchronization, media, cloud
storage, etc.)

 isBidirectional Whether a gateway is
bidirectional or unidirectional

D1.1 Data, Cloud Application & Resource Modelling

Page 70

(when the false value is given
for this attribute). A
bidirectional gateway also
allows the flow of responses
(from destination to origin
networks)

 Repeater
(one level
down the
System
Device)

 A system device that receives a
signal and retransmits it. This
enables signals to cover longer
distances or to reach the other
side of an obstruction.

 isDigital Indicates whether it is a digital
(or an analog) repeater

 isMultiPort Indicates whether it is a multi-
or single-port repeater

 isSmart Indicates whether this repeater
is smart

 hasRepeater Type Indicates the type of a repeater
(e.g., optical, WiFi, etc.)

 Switch (one
level down
the System
Device one)

 Represents a system device that
connects (network) devices
through a network by using
packet switching to receive and
forward data towards the
destination device

 isMultiOSILayer Indicates whether the switch
operation covers multiple and
not just one OSI layer

 hasFormFactor Indicates the form factor of a
switch (e.g., standalone, rack
mounted, stackable, etc.)

 hasSwitch
Configuration

Indicates the kind of
configuration of the switch
(e.g., unmanaged, managed,
enterprise managed, etc.)

 hasSwitch Method Indicates the method utilised
for the network switching (e.g.,
cut through, fragment free, etc.)

 hasSpeed The transmission speed of the
switch

 hasPortNumber The number of ports in the
switch

 hasPoE Indicates whether the switch
has a Power over Ethernet
injection built-in

 Router (one
level down
the System
Device)

 This class refers to a
networking device that
forwards data packets between
networks applying directing
functions.

 hasRouterType This data property refers to
which type characterize the
router (e.g. wireless,
broadband, core, edge).

 supports Dynamic
Routing

This Boolean data property
refers whether or not adaptive
routing is supported.

 hasRouting
Protocol

This object property associates
Router class with the
RoutingProtocol class (of the
SoftwareNetoworkEntity) to
define the protocol used.

D1.1 Data, Cloud Application & Resource Modelling

Page 71

 User Device A kind of hardware (network)

node which can vary in terms
of location within a network
while it can offer different
types of services

 hasAccess
PointsInRange

This object property has range
the AccessPoint class to define
the access points in range of
this device

 hasUDStatus The status (attached, detached,
unreachable) of this device

 hasServices This object property has range
the Service class to define the
services offered by this device

 User
Equipment
(one level
down the
User
Device)

 A kind of a user device like a
phone, laptop, etc.

 hasUEType The type of the equipment
(LiFi, WiFi, Cellular)

 Interface This class models a point of
interconnection between a
device and a private or public
network associated to an IaaS
resource that may involve
Cloud or Edge nodes.

 hasMinNumberOf
Interfaces

This property expresses the
minimum amount of network
interfaces an IaaS offering is
requested to have or already
has.

 hasMaxNumberOf
Interfaces

This property expresses the
maximum amount of network
interfaces an IaaS offering is
requested to have or already
has.

 hasSupportFor
NetworkingFastPr
ocessing

This property denotes a
boolean value to assess the
capability of network adapter to
support fast processing.

 isBoundTo
SubNetwork

This object property refers to
the subnet associated to the
network adapter.

 hasManufacturer This property expresses as a
string the manufacturer of the
virtual network adapter.

 hasInQueue The inbound Queue of the
interface

 hasOutQueue The outbound Queue of the
interface

 hasIP The IP mapping to this
interface

 hasMAC The MAC address mapping to
this interface

 hasFrequency Data transfer frequency
 isStatic This Boolean property

indicates whether the interface
is static or configurable

 hasCapacity This property refers to the
maximum throughput, data/rate

D1.1 Data, Cloud Application & Resource Modelling

Page 72

that can be supported by the
interface

 hasEncoding Type The type of encoding
performed via the interface
(e.g., packet, ethernet, PDH,
etc.)

 hasTransport Type The type of transport supported
via this interface, i.e., of the
technology used to map the
data on to the encoding. Each
type maps to a specific value as
defined by the IETF. Multiple
values for transport type might
map to the same encoding type

 WLAN
Interface
(one level
down the
Interface)

 An interface for WLAN
networks

 has Antenna Gain The gain of the antenna in the
(WLAN) interface

 has Antenna
Height

The height of the antenna in the
(WLAN) interface

 Link (one
level down
the
Interface)

 A link enables to establish a
connection between the
interfaces of two (or more)
devices

 hasLType The type of the link (e.g.,
Wired, Wifi, Lifi)

 hasLBandwidth The bandwidth of the link
 usedbandwidth The used bandwidth of the link
 hasPacketLoss The percentage of lost packets

in the link
 hasRoundTrip

Time
The amount of time required
for a packet to reach a
destination and arrive back
through the current link

 hasDataRate Average number of bits,
characters, symbols or data
blocks passing through a link
per unit time

 hasTransmit
Power

The amount of energy needed
to transmit a packet via the link

 hasReceive Power The amount of energy needed
to receive a packet via the link

 hasLink
Throughput

The throughput of the link

 hasLJitter The jitter related to this link
 hasReliability The reliability of this link to

carry out its intended
functionality, i.e., establish
connections and successfully
pass data through.

 hasDuplexity Whether the link is half or full
duplex or simplex

 hasBitErrorRate The rate of bit errors related to
this link

 Binary Link
(one level
down the
Link one)

 A binary link that connects two
interfaces together

 hasFrom Interface The origin interface of the link

D1.1 Data, Cloud Application & Resource Modelling

Page 73

 hasToInterface The target interface of the link
 Broadcast

Link (one
level down
the Link
one)

 A link that connects multiple
interfaces where
information/data is broadcasted
over them

 hasBLInterfaces The set of interfaces associated
with this broadcast link

 Cross
Connect
Link (one
level down
the Link
one)

 Represents an internal data
transport within a network
device, i.e., between the
network elements inside such a
device

 hasBinaryLinks The set of binary links
associated with this cross-
connect link

Table 8: Extensions regarding the Paas/Serverless Class

Class Taxonomy Levels Properties Description
PaaS This class encapsulates all the attributes

related to platform level cloud resources
that are required and offered for
deploying Morphemic-enabled
applications

 isOferedby
Provider

This object property associates the PaaS
class with the Provider Class (of the
Application Placement Model) for
expressing characteristics and identity of
the resource provider.

 usesCloud This object property associates the PaaS
class with the Cloud Class (of the
Application Placement Model) for
denoting with one reference the
characteristics of the underlying IaaS
level resources used for offering PaaS
services.

 hasCloud
Location

This object property associates the PaaS
class with the Cloud Location Class (of
the Big Data Model) for expressing the
network or physical location of the
virtualised resource.

 hasCost Function This property associates the PaaS class
with a string that refers to a function that
provides an accurate calculation of the
expected cost for using platform level
services.

 hasAvailability This property may associate a PaaS
resource with a float that expresses the
expected uptime of the platform level
resource.

 hasPricingType This Property refers to the different
pricing per use schemes that each
provider may offer regarding platform
level cloud resources.

 Serverless This class represents a Serverless PaaS,
i.e., a PaaS that enables the deployment
of functions/serverless components in
the cloud

D1.1 Data, Cloud Application & Resource Modelling

Page 74

 supportsCICD Whether the serverless platform

supports the continuous integration and
deployment of function-based/serverless
components

 supports
AuthProvider

Indicates whether authentication
provider(s) are supported by the
serverless platform

 supports
AuthorisationMo
del

This object property has as a range the
Authorization class (of the Security
Controls) to indicate the authorisation
model(s) supported by the serverless
platform

 supports
Logging

This data property indicates whether the
serverless platform supports the logging
of serverless function when they are
executed

 supports
Monitoring

This data property indicates whether the
serverless platform supports the
monitoring of serverless functions

 supports Testing This data property indicates whether the
serverless platform supports the testing
of serverless functions

 hasTesting Types This data property indicates the types of
testing (e.g., unit testing) supported over
serverless functions by the platform

 supports
Diagnostics

This data property indicates whether the
platform provides some diagnostics over
the problematic execution/deployment
of serverless functions

 onPremise This data property indicates whether the
serverless platform can be installed and
operated on premise

 Composition This subclass represents the technology
of a serverless platform to support the
composition of functions

 Cost This subclass represents the cost model
of a serverless PaaS

 hasCostPer
Million
RequestsPer
Month

This data property refers to the factor
that calculates the cost induced per
million of requests issued on deployed
functions related to a single account in
the serverless PaaS

 hasCostGBPer
Second

This data property refers to the
memory/duration-based cost factor for a
specific user account. It is calculated as
the total cost of all function calls for a
certain account, considering the memory
used/allocated per time used (in
seconds) to complete the function call.

 FreeQuota This subclass refers to a free quota per
month that is associated with an account
in the serverless PaaS

 hasRequests
PerMonth

This data property refers to the number
of requests that are offered for free for
this account

 hasGBPer
SecondsPer
Month

This data property refers to the total
number of GB per seconds that are
allowed for free to be consumed by the
user account’s functions.

 hasEgress
TrafficPer Month

This data property refers to the egress
traffic per month that is allowed in total
for all functions related to a specific user

D1.1 Data, Cloud Application & Resource Modelling

Page 75

account
 Limits This subclass represents the set of

limitations that are associated with a
serverless PaaS.

 allowsNumberOf
Functions
PerProject

This data property refers to the number
of functions per project that are allowed
for a user account

 allowsMax
Deployment Size

This data property refers to the
maximum deployment size of any
function associated with a user account

 allowsMax
HTTPRequest
Size

This data property refers to the
maximum size that HTTP requests can
have over any function of a user account

 allowsMax
HTTPResponseSi
ze

This data property refers to the
maximum size that HTTP responses
from any function of a user account can
have

 allowsMax
EventSize

This data property refers to the
maximum size that any event can have
in the context of a user account

 allowsMax
Duration

This data property refers to the
maximum duration that any function can
have of a user account

 allowsMax
BuildTime

This data property refers to the
maximum build time that any function
can have

 allowsMax
InactivityTime

This data property refers to the
maximum inactivity time that any
function (instance) can have before its
container is dropped from the host.

 allowsMax
Function
InvocationsPer
Second

This data property refers to the
maximum number of invocations that
can be performed over any function

 allowsMaxGHzP
erSecond

This data property refers to the
maximum processing frequency that can
be associated with any function per
second

 allowsMaxAPI
Read Throughput

This data property refers to the
maximum read throughput of a
serverless API (Gateway - collection of
functions)

 allowsMaxAPIW
rite Throughput

This data property refers to the
maximum write throughput of a
serverless API (Gateway - collection of
functions)

 allowsMaxAPI
Invocation
Throughput

This data property refers to the
maximum API invocation throughput of
a serverless API (Gateway - collection
of functions)

 allowsMax
InboundSocketD
ata

This data property refers to the
maximum amount of inbound socket
data per function

 allowsMax
Outbound
SocketData

This data property refers to the
maximum amount of outbound socket
data per function

 allowsMax
Socket
Connections
PerSecond

This data property refers to the
maximum number of socket connections
per second

 allowsMaxDNSR
esolutionsPerSec

This data property refers to the
maximum amount of DNS resolutions

D1.1 Data, Cloud Application & Resource Modelling

Page 76

ond per second
 allowsMax

InvocationRate
This data property refers to the
maximum invocation rate of any
function

 allowsMax
Concurrent
EventSize

This data property refers to the
maximum size of concurrent events that
can be consumed by a function

 allowsMax
IncomingEventSi
ze Throughput

The maximum incoming event size
throughput that can be supported

 allowsMaxRAMS
ize

This data property refers to the
maximum amount of RAM that can be
allocated for a function

 allowsMax
EphemeralDiskC
apacity

This data property refers to the
maximum ephemeral disk capacity that
can be supported per function

 allowsMax
NumberOf
Processes

This data property refers to the
maximum number of processes that can
be supported per function

 allowsMax
EventNumber
PerMinute

This data property refers to the
maximum number of events that can be
supported/consumed per minute

 EventType This subclass represents the type of
events that can be consumed to trigger a
function

 HTTP This subclass represents an HTTP
(request) event/trigger of a function

 Schedule This subclass represents a schedule-
based event that can trigger a function

 WebHook This subclass represents a web hook-
based invocation event of a function

 Trigger This subclass represents an event trigger
in general that may refer to log, storage,
poll or push-based triggers.

 Serverless
Platform

 This subclass represents the serverless
platform that offers a serverless PaaS
service. Instances: AWS Lambda, Azure
Functions, Google Cloud Functions.

 Serverless
Framework

 This subclass is a serverless framework
that can enable the development and
deployment of functions.
Instances: OpenWhisk15, Fission16,
Kubeless17, Oracle Fn18, Riff19

Table 9: Extensions to the Paas/Security Controls classes

Class Taxonomy Levels Properties Description and Related Ontology
(if any)

Security
Controls

 This is a subclass of the PaaS class and
refers to all the possible security
enforcement mechanisms that may be
offered or required as a service for
protecting the operation of hosted cloud

15 https://openwhisk.apache.org/
16 https://fission.io/
17 https://kubeless.io/
18 https://fnproject.io/
19 https://projectriff.io/

D1.1 Data, Cloud Application & Resource Modelling

Page 77

applications. All its subclasses refer to
specific security controls that have been
classified based on the latest version of
the Cloud Controls Matrix (CSA, 2016)
introduced by the Cloud Security
Alliance.

 guarantees Non
Repudiation

This property refers to a Boolean value
that states whether or not the offered PaaS
services can provide proof of the integrity
and origin of data with high assurance.

 CSA-IAM-
02

 This class refers to all the relevant
security controls offered as a PaaS service
that belong to the CSA control domain
entitled as: Identity & Access
Management - Credential Lifecycle /
Provision Management.
Note: the details of this subclass have not
been changed, so we do not mention all its
subclasses and properties here. All the
details are available in (Verginadis et al.,
2017).

 CSA-IAM-
09

 This class refers to all the relevant
security controls offered as a PaaS service
that belong to the CSA control domain
entitled as: Identity & Access
Management - User Access Authorization.
Note: the details of this subclass have not
been changed, so we do not mention all its
subclasses and properties here. All the
details are available in (Verginadis et al.,
2017).

 CSA-IVS-01 This class refers to all the relevant
security controls offered as a PaaS service
that belong to the CSA control domain
entitled as: Infrastructure & Virtualization
Security - Audit Logging / Intrusion
Detection.
Note: the details of this subclass have not
been changed, so we do not mention all its
subclasses and properties here. All the
details are available in (Verginadis et al.,
2017).

 CSA-IVS-
06

 This class refers to all the relevant
security controls offered as a PaaS service
that belong to the CSA control domain
entitled as: Infrastructure & Virtualization
Security - Network Security.

 IPS This subclass is used to provide
information about the characteristics of
intrusion prevention systems (IPS) for
examining network traffic flows and
patterns in order to detect and prevent
vulnerability exploits.

 Firewall Represents a firewall that can be run
within a network (in a particular node)

 hasFirewall Type The type of the firewall (e.g., packet
filtering, circuit level gateway, etc.)

 isVirtual Indicates whether the firewall is virtual or
not

 Security
Configu-

ration

 A security configuration over a network
entity (such as a network or VPC) that is
specified through a set of network access

D1.1 Data, Cloud Application & Resource Modelling

Page 78

rules
 NetworkA

ccess Rule
 A rule that controls the access of a

network entity (such as a network or
subnet)

 isInbound Indicates whether the rule concerns
inbound or outbound (in case it takes a
false value) traffic

 refersTo Protocol This object property has range the
NetworkProtocol class to define the
(network) protocol concerned in a certain
access rule.

 refersToTCP Whether it maps to TCP or UDP packets
 hasTarget The entity (IP or range of IPs) for which

the flow is controlled by this rule. It is the
source of inbound traffic or the
destination of outbound traffic.

 allow Indicates whether the traffic should be
allowed or forbidden (in case a false value
is given)

 CSA-IVS-13 This class refers to all the relevant
security controls offered as a PaaS service
that belong to the CSA control domain
entitled as: Infrastructure & Virtualization
Security - Network Architecture.
Note: the details of this subclass have not
been changed, so we do not mention all its
subclasses and properties here. All the
details are available in (Verginadis et al.,
2017).

 CSA-GRM-
10

 This class refers to all the relevant
security controls offered as a PaaS service
that belong to the CSA control domain
entitled as: Governance and Risk
Management - Risk Assessments.
Note: the details of this subclass have not
been changed, so we do not mention all its
subclasses and properties here. All the
details are available in (Verginadis et al.,
2017).

 CSA-EKM-
02

 This class refers to all the relevant
security controls offered as a PaaS service
that belong to the CSA control domain
entitled as: Encryption & Key
Management - Key Generation
Note: the details of this subclass have not
been changed, so we do not mention all its
subclasses and properties here. All the
details are available in (Verginadis et al.,
2017).

 CSA-EKM-
03

 This class refers to all the relevant
security controls offered as a PaaS service
that belong to the CSA control domain
entitled as: Encryption & Key
Management - Sensitive Data Protection
Note: the details of this subclass have not
been changed, so we do not mention all its
subclasses and properties here. All the
details are available in (Verginadis et al.,
2017).

 CSA-DSI-07 This class refers to all the relevant
security controls offered as a PaaS service
that belong to the CSA control domain

D1.1 Data, Cloud Application & Resource Modelling

Page 79

entitled as: Data Security & Information
Lifecycle Management - Secure Disposal
Note: the details of this subclass have not
been changed, so we do not mention all its
subclasses and properties here. All the
details are available in (Verginadis et al.,
2017).

 CSA-BCR-
02

 This class refers to all the relevant
security controls offered as a PaaS service
that belong to the CSA control domain
entitled as: Business Continuity
Management & Operational Resilience -
Business Continuity Testing
Note: the details of this subclass have not
been changed, so we do not mention all its
subclasses and properties here. All the
details are available in (Verginadis et al.,
2017).

 Hardware
Based
Security

 This class aggregates all the security
capabilities that can be offered as a
service through dedicated hardware
components.

 FPGA
Security

 This class refers to the security
capabilities implanted in a FPGA
hardware.

 hasBitstream
Encryption

The encryption algorithm utilised for
bitstream encryption

 hasBitstream
Authentication

The method used for bitstream
authentication

 hasNonvolatileFl
ashMemory

Indicates whether a non-volatile flash
memory is utilised in the FPGA

 hasFlash
MemoryLookupT
able

Indicates whether a flash memory lookup
table exists in the FPGA

 hasSecure
DeviceManager

Examines whether a secure device
manager is exploited in the FPGA

 hasPhysically
Unclonable
Functions

Examines whether the supported functions
in the FPGA are physically uncloneable

 hasBootCode
Authentication

Examines the support for boot code
authentication

 hasSide
ChannelAttack
Protection

Indicates whether the FPGA can be
protected from side channel attacks

 Secure
Enclave

 This class refers to the capability of a
Trusted Execution environment based on
dedicated microkernels that support
isolation and encryption.
Instances: Intel SGX (Software Guard
Extensions), ARM Trustzone, AMD SEV
(Secure Encrypted Virtualization)

Table 10: Extensions with respect to the Big-Data Model/Big Data Aspects classes

Class Taxonomy Levels Properties Description and Related Ontology (if any)
Big Data
Aspects

 This class encapsulates all the attributes that can be used in
order to describe the main characteristics of big data to be
processed by Morphemic-enabled cloud applications hosted
on multi-clouds. Based on such attributes, preferences on
quantitative and qualitative dimensions of virtualized

D1.1 Data, Cloud Application & Resource Modelling

Page 80

resources can be expressed.
 hasData

Owner
This property associates the Big Data Aspects class with the
Subject class of the Context Aware Security model in order
to express the owner of the data to be handled by a
Morphemic-enabled application.

 hasData
Location

This property associates the Big Data Aspects class with the
Data Location class of the Big Data Model in order to
denote where certain data artefacts may be found.

 Data
Density

 This subclass reveals details on big data observed or
expected velocity and volume.
Note: the details of this subclass have not been changed, so
we do not mention all its subclasses and properties here. All
the details are available in (Verginadis et al., 2017).

 Data
Variety

 This class refers to the different types of data that should be
processed by a Morphemic-enabled cloud application,
stating an increased diversity of data that should be stored,
processed or combined.

 Format This subclass refers to the structural variety that big data
may involve which is expressed using certain schemes and
models.
Instances: BLOB (binary large object), JSON, XML, File,
Key-Value Pairs, String, Event, CSV, RDD (Resilient
Distributed Datasets)

 Type This subclass refers to the media variety that big data may
involve with respect to the medium in which data get
delivered.
Instances: Audio, Image, Video, Text

 Data
Value

 This class refers to big data aspects that reveal the business
importance of data which is bound to the potential of
improving a business entity’s decision making capabilities.
Note: the details of this subclass have not been changed, so
we do not mention all its subclasses and properties here. All
the details are available in (Verginadis et al., 2017).

 Data
Quality

 This class encapsulates another group of important big data
concepts that reveal aspects about how accessible, secure,
compact, volatile or uncertain the data is.
Note: the details of this subclass have not been changed, so
we do not mention all its subclasses and properties here. All
the details are available in (Verginadis et al., 2017).

Table 11: Extensions with respect to the Big-Data Model/Data Location classes

Class Taxonomy Levels Properties Description and Related Ontology
(if any)

Data
Location

 This class encapsulates all the concepts that can be used for
describing the origin of data or the current or required physical/
network location where the data can be stored or processed by a
Morphemic-enabled application.

 isStorage
Location

This data property associates the Data Location class with a
Boolean value that specifies whether or not the data location
mentioned is where the data will be stored or processed.

 sameAs This object property associates the Data location class to another
Data location recursively in order to facilitate the expression of
requirements that dictate the use of the same location(s) as the
ones previously selected for other data artefacts.

 notSameAs This object property associates the Data location class to another
Data location recursively in order to facilitate the expression of
requirements that forbid the use of the same location(s) as the
ones previously selected for other data artefacts.

 hasSparsity This data property associates the Data location class to a string

D1.1 Data, Cloud Application & Resource Modelling

Page 81

that denotes how distributed (e.g. Low, Medium, High) are the
data sources or data locations exploited for producing a dataset to
be processed by a Morphemic-enabled application.

 has Preferred
Location

This object property associates the Data location class to the
Location class of the Context Aware Security Model in order to
facilitate the expression of preferences for using certain network,
physical and/or cloud location(s) in order to store or process data
artefacts.

 has Allowed
Location

This object property associates the Data location class to the
Location class of the Context Aware Security Model in order to
facilitate the expression of permitted network, physical and/or
cloud location(s) for storing or processing data artefacts.

 has
Disallowed
Location

This object property associates the Data location class to the
Location class of the Context Aware Security Model in order to
facilitate the expression of forbidden network, physical and/or
cloud location(s) for storing or processing data artefacts.

 hasPhysical
Location

This object property associates the Data Location class to the
Physical Location from the Context Aware Security model in
order to define the concrete physical region where data may be
stored or processed.

 hasNetwork
Location

This object property associates the Data Location class to the
Network Location from the Context Aware Security model in
order to define the network region where data may be stored or
processed.

 Origin This subclass involves all the relevant concepts for defining the
source location of the data artefacts to be processed by a
Morphemic-enabled application.

 hasCloud
Location

This object property associates the Origin class to the Cloud
Location class from the Context Aware Security model in order
to define the positioning of Data to certain Cloud host
infrastructures.

 hasEdge
Location

This object property associates the Origin class to the Physical
Location class from the Context Aware Security model in order
to define the positioning of Data to certain physical areas or
points that denote hosting on Edge nodes.

Table 12: Big-Data Model/Data Timestamp and Data Domains classes descriptions provided for overview reasons

Data
Timestamp

 This class includes all the necessary concepts for describing the
temporal characteristics of data artefacts to be processed by a
Morphemic-enabled application.
Note: the details of this subclass have not been changed, so we do
not mention all its subclasses and properties here. All the details are
available in (Verginadis et al., 2017).

Data
Domains

 This class encapsulates all the relevant concepts that characterize
data based on the industries that produce it or need to extract
information from it (Murthy et al., 2014). Specifically, we reuse and
extend the big data taxonomy introduced by the Cloud Security
Alliance (Murthy et al., 2014).
Note: the details of this subclass have not been changed, so we do
not mention all its subclasses and properties here. All the details are
available in (Verginadis et al., 2017).

D1.1 Data, Cloud Application & Resource Modelling

Page 82

Table 13: Extensions with respect to the Big-Data Model/ Data Management classes

Class Taxonomy Levels Properties Description and Related
Ontology (if any)

Data
Mana-
gement

 This class encapsulates all the
relevant concepts that can be used in
order to describe major
technological choices with respect to
how big data is acquired, stored,
processed, transferred or replicated
for redundancy reasons.

 hasData Timestamp This object property associates the
Data Management class with the
Data Timestamp class of the Big
Data model in order to express the
time when certain data artefacts
where acquired, processed or
transferred.

 hasAgent This object property associates the
Data Management class with the
Subject class of the Context Aware
Security model in order to express
the responsible entity for performing
data acquisition, processing
transferring and storage.

 Acquisi-tion This subclass is used in order to
describe the required or offered
types of big data acquisition in the
frame of a Morphemic-enabled
cloud application devised to process
it.

 isReliable This data property associates the
Acquisition class with a boolean
value that captures whether or not
the means of data acquisition
required or offered guarantee the
accuracy of the data received.

 buffersMessages This data property associates the
Acquisition class with a boolean
value that expresses the capability of
a Morphemic-enabled application to
resolve any bottlenecks by buffering
the surplus data, in cases that the
data acquisition rates are larger than
the processing rates.

 applies
Backpressure

This property associates the
Acquisition class with a boolean
value that denotes the capability of
interrupting the data source
transmission in cases that the
receiver and its buffers are not able
to receive additional data for a short
period of time.

 dropsMessages This property associates the
Acquisition class with a boolean

D1.1 Data, Cloud Application & Resource Modelling

Page 83

value that refers to bottleneck
situations being resolved by
dropping any surplus data.

 Source This subclass refers to aspects of the
data source that characterize the data
model and the nature of data to be
digested by a Morphemic-enabled
application.

 isBatch This Boolean property is used to
define the nature of data artefacts to
be stored and processed in batch
mode by a Morphemic-enabled
application.

 isStream This Boolean property is used to
define the nature of data artefacts to
be stream processed by a
Morphemic-enabled application.

 Structured This subclass refers to a data source
that produces data artefacts
comprised of clearly defined data
types whose pattern makes them
easily searchable

 Unstructured This subclass refers to a data source
that produces data artefacts who do
not follow a structured data model
and is usually difficult to search
(e.g. audio source, video source etc.)

 Semi-
structured

 This subclass refers to a data source
that produces data artefacts that
although they do not follow a strict
data model, they contain semantic
tags (e.g. XML source).

 Pull-based This subclass aims to capture
concepts related to the pull-based
paradigm for acquiring data, where
there is a request for triggering the
transmission of data which is
initiated by the Morphemic-enabled
application, i.e. the receiver entity
(Yang et al. 2017) and the receipt
takes place in a synchronous
manner.

 Push-based This subclass aims to capture
concepts related to the push-based
paradigm for acquiring data
asynchronously, where the request
for a given transaction is initiated by
the publisher (Yang et al. 2017).

 isOrdered This property associates the Push-
based class with a boolean value that
states whether or not the certain
push-based technique used for
relaying big data, guarantees the
time ordering of the received data
before their processing takes place.

 uses Acknowledg-
ments

This property associates the Push-
based class with a boolean value that
defines whether or not the data
source will repeatedly attempt to re-
send the data to the Morphemic-
enabled application until a receipt
confirmation message is sent.

D1.1 Data, Cloud Application & Resource Modelling

Page 84

 Message

Brokering
 This subclass refers to a certain type

of push-based acquisition of data
where an intermediary software
component undertakes the task of
translating and rooting data
transparently to any given number
of subscribed receivers
(Morphemic-enabled applications)
that expect the acquisition of certain
data in a pre-defined format (Hohpe
& Woolf, 2004).

 Centralized This is a subclass of the Message
Brokering class where the push-
based paradigm, for communicating
data between producers and
subscribers, is implemented with a
central broker application, usually
called enterprise service bus – ESB
(Chappell, 2004).
Instances: WSO2 ESB20, jBoss
ESB21, Mule ESB22, Apache
Servicemix23, Apache Camel24,
Open Studio for ESB25, Google
Cloud Pub/Sub26, IBM MQ27, Azure
Service Bus28, RabbitMQ29, Apache
ActiveMQ30.

 Distributed This is a subclass of the Message
Brokering class where the push-
based paradigm for communicating
data uses several dispersed, but
integrated software applications
(also called distributed ESB) with
message brokering capabilities,
instead of just one centralised broker
entity in order to avoid any
performance bottlenecks.
Instances: Apache Kafka31, Petals
ESB32

 Brokerless
Messaging

 This subclass refers to a certain type
of push-based acquisition of data
where there are not intermediaries in
the middle for translating and
rooting data, instead direct peer-to-
peer communication between the
data sources and the receivers (i.e.
Morphemic-enabled application) is
considered for low latency and/or
high transaction rate applications
(ZeroMQ, 2008).

20 http://wso2.com/products/enterprise-service-bus/
21 http://jbossesb.jboss.org/
22 https://www.mulesoft.com/platform/soa/mule-esb-open-source-esb
23 http://servicemix.apache.org/
24 https://camel.apache.org/
25 https://www.talend.com/products/application-integration/esb-open-studio/
26 https://cloud.google.com/pubsub/
27 https://www.ibm.com/products/mq
28 https://azure.microsoft.com/en-us/services/service-bus/
29 https://www.rabbitmq.com/
30 https://activemq.apache.org/
31 https://kafka.apache.org/
32 https://petals.linagora.com/

D1.1 Data, Cloud Application & Resource Modelling

Page 85

 UDP Multicast This is a subclass of the Brokerless

Messaging class and refers to the
simultaneous group communication
(multicast) using the User Datagram
Protocol –UDP (Kurose & Ross,
2010). Instances: StatsD33,
Brubeck34.

 TCP/IP
Multicast

 This is a subclass of the Brokerless
Messaging class and refers to the
technique for one-to-many
communication over an IP
infrastructure in a network. (Kurose
& Ross, 2010). Instances:
ZeroMQ35, MQTT36.

 Data Storage This subclass encapsulates all the
concepts that can be used for
characterising the way that input or
output data should be stored. The
hierarchy involved updates the
storage infrastructure taxonomies
that (Murthy et al., 2014) and
(Mazumdar et al., 2019) presented.

 Database
Manage-
ment
Systems

 This class refers to data storage
approaches applied through
relational or non-relational systems.

 offersDataGrid This Boolean property denotes the
capability of a database system to
provide access to extremely large
amounts of geographically
distributed data.

 Relational
Storage

 This subclass refers to databases
used for persisting data that are
structured in a way that capture and
present relations between stored data
artefacts (Codd, 1970).

 inMemory
Relational

This Boolean property characterises
a relational database management
system that primarily relies on
(cloud) hosting resource’s main
memory for persisting data instead
of employing a disk storage
mechanism. For example H237,
HSQLDB38, MemSQL39, and
SQLite40 can be used as in memory
relational database systems.

 RDBMS This subclass of Relational class,
groups all the traditional SQL-based
database management systems.
Instances: Microsoft SQL Server41,
MySQL42, Oracle43, PostgreSQL44,

33 https://github.com/etsy/statsd
34 https://githubengineering.com/brubeck/
35 http://zeromq.org/
36 http://mqtt.org/
37 http://h2database.com/html/main.html
38 http://hsqldb.org/
39 https://www.memsql.com/software/
40 https://sqlite.org/
41 https://www.microsoft.com/en-us/sql-server/sql-server-downloads
42 https://www.mysql.com/

D1.1 Data, Cloud Application & Resource Modelling

Page 86

IBM DB245, H2, HSQLDB,
MemSQL, SQLite.

 NewSQL This subclass refers to a type of
parallel database management
systems that provides the same
scalable performance of non-
relational systems while still
maintaining the same level of
transactional support (i.e. support
the properties of Atomicity,
Consistency, Isolation, and
Durability – ACID) as the
traditional relational databases
(Murthy et al., 2014).
Instances: VoltDB46, H-Store47,
NuoDB48, CockroachDB49.

 Non-Relational
Storage

 This subclass refers to databases
(also called NoSQL) used for
persisting data that are not modelled
using tabular relations and present
certain advantages over the
relational databases, especially for
big data since they offer design
simplicity and more efficient
horizontal scaling.

 inMemoryNon
Relational

This Boolean property characterises
a non-relational database
management system that primarily
relies on (cloud) hosting resource’s
main memory for persisting data
instead of employing a disk storage
mechanism. For example
Aerospike50, Redis51, ArangoDB52,
Memcached53 and Hazelcast54 can
be used as in memory non-relational
database systems.

 Key-Value This subclass of Non-Relational
Storage refers to a non-relational
data storage paradigm designed for
storing, retrieving, and managing
associative arrays based on keys.
These associative arrays contain a
collection of objects with many
different fields within them (Tweed
& James, 2010).
Instances: Riak55, Redis,
LevelDB56, Voldemort57,
Memcached, Aerospike, Hazelcast.

43 https://www.oracle.com/database/technologies/appdev/sqldeveloper-landing.html
44 https://www.postgresql.org/
45 https://www.ibm.com/analytics/db2
46 https://www.voltdb.com/
47 http://hstore.cs.brown.edu/
48 https://nuodb.com/
49 https://www.cockroachlabs.com/product/
50 http://www.aerospike.com/
51 https://redis.io/
52 https://www.arangodb.com/
53 https://memcached.org/
54 https://hazelcast.org/
55 https://riak.com/
56 https://github.com/google/leveldb

D1.1 Data, Cloud Application & Resource Modelling

Page 87

 Document DB This subclass refers to a software

application designed for performing
CRUD operations over semi-
structured data called document-
oriented information.
Instances: MongoDB58, NosDB59.

 Wide-Column This subclass involves compressed,
high performance databases that
follow a column-oriented data
model that does not rely on a fixed
schema. Specifically, they provide
nestable, map-like structures for
data items which improve flexibility
over fixed schema (Chang et al.
2008).
Instances: Bigtable60, HBase61,
Cassandra62.

 Time-Series This subclass refers to databases that
are optimized for storing and
serving series of data points indexed
in time order, through associated
pairs of time(s) and value(s) (Mueen
et al., 2009).
Instances: Prometheus63,
InfluxDB64, Axibase65,
OpenTSDB66

 GraphDB This subclass refers to databases that
use graph structures (with nodes,
edges and properties) for storing and
retrieving data. Some are
implemented adopting the relational
paradigm by storing the graph data
in a table while others use a key-
value store or document-oriented
database for storage (Angles &
Gutierrez, 2008).
Instances: Neo4j67, OnyxDB68,
Titan69.

 Multimodel DB This subclass refers to database
management systems that support
multiple data models (e.g.
document, graph, relational, and
key-value models) in one integrated
backend (Lu & Holubová, 2017).
Instances: ArangoDB, OrientDB70,
DynamoDB71

 File This class groups different systems

57 http://www.project-voldemort.com/voldemort/
58 https://www.mongodb.com/
59 https://www.npmjs.com/package/nosdb
60 https://cloud.google.com/bigtable/
61 https://hbase.apache.org/
62 http://cassandra.apache.org/
63 https://prometheus.io/
64 https://www.influxdata.com/
65 https://axibase.com/
66 http://opentsdb.net/
67 https://neo4j.com/
68 https://www.onyxdevtools.com/
69 http://titan.thinkaurelius.com/
70 http://orientdb.com/orientdb/
71 https://aws.amazon.com/dynamodb/

D1.1 Data, Cloud Application & Resource Modelling

Page 88

Systems used for organising the way data can
be placed, retrieved and modified in
and from a computer storage
medium. They can be local in
computer system or distributed.

 Local File
System

 This subclass involves subsystems
available in all operating systems
that allow the non-scalable
persistence, retrieval and update of
information in the hard drives of a
computer.

 Distributed
File System

 This subclass refers to an extended
networked file system that allows
multiple distributed nodes to
internally share data or files (Levy
& Silberschatz, 1990). This system
provides scalability, fault-tolerance,
concurrent file access and metadata
support.

 Client-Server This subclass of the Distributed File
System class refers to a client-server
architecture based file system in
which all communications between
servers and clients are conducted via
remote procedure calls (Mazumdar
et al., 2019).
Instances: GlusterFS72, Lustre73

 Clustered
Distributed

This subclass of the Distributed File
System class refers to a fault-
tolerant file system that offers
multiple nodes to enable concurrent
access to the same block device.
(Mazumdar et al., 2019)
Instances: HDFS74, CephFS75,
iRODS76, MooseFS77.

 Symmetric This subclass of the Distributed File
System class refers to systems with
masterless architectures, employing
a distributed hash table approach for
data distribution and replication
across systems (Mazumdar et al.,
2019).
Instances: PVFS78, Ivy
(Muthitacharoen et al., 2002), Red
Hat GFS79

 Processing This subclass encapsulates all the
concepts that can be used for
describing and classifying the
various types of big data processing
that can be conducted by a
Morphemic-enabled cloud
application. The hierarchy
introduced updates both the DICE

72 https://www.gluster.org/
73 https://opensfs.org/lustre/
74 https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
75 https://docs.ceph.com/en/latest/cephfs/
76 https://github.com/irods/irods
77 https://moosefs.com/
78 https://web.archive.org/web/20160701052501/http://www.pvfs.org/
79https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/4/html-single/global_file_system/index

D1.1 Data, Cloud Application & Resource Modelling

Page 89

model for big data intensive
application (Gómez et al., 2016) and
the computer infrastructure
taxonomy presented by CSA Big
Data Taxonomy (Murthy et al.,
2014).
Note: the details of this subclass
have not been changed, so we do not
mention all its subclasses and
properties here. All the details are
available in (Verginadis et al.,
2017).

 Transfer This subclass of Data Management
class refers to any concept that can
be used for describing aspects
related to communicating data
artefacts between their data sources
and the processing or storing
locations.

 hasData
TransferCost

This property associates the Transfer
class with a float that denotes the
actual or expected cost for
transferring data.

 hasDataTransfer
Duration

This property associates the Transfer
class with a float that denotes the
time needed for transferring data
between different locations.

 hasTransfer Origin This property associates the Transfer
class with the Data Location class of
the Big Data Model in order to
identify the source location of a
data-transferring task.

 hasTransfer Target This property associates the Transfer
class with the Data Location class of
the Big Data Model in order to
identify the sink location of a data-
transferring task.

 hasDataTransfer
DesiredStart Time

This property associates the Transfer
class with a date datatype in order to
define the desired start time of a
data-transferring task.

 hasDataTransfer
Desired
CompletionTime

This property associates the Transfer
class with a date datatype in order to
define the desired end time of a
data-transferring task.

 hasData Migration
Security Constraint

This property associates the Transfer
class with the Security Context
Element class in order to list
DateTime, Location and
Connectivity related constraints
during data migration.

 Redun-
dancy

 This subclass encapsulates any
approach used for persisting the
same data artefacts in several
separate places, either in a single
database, or in remote databases for
detecting and reconstructing lost or
damaged data (Doorn & River,
2002).
Note: the details of this subclass
have not been changed, so we do not
mention all its subclasses and

D1.1 Data, Cloud Application & Resource Modelling

Page 90

properties here. All the details are
available in (Verginadis et al.,
2017).

