

Test report for prototype release

Modelling and Orchestrating heterogeneous
Resources and Polymorphic applications for
Holistic Execution and adaptation of Models
In the Cloud

Executive summary

This document presents the process of testing MORPHEMIC Release
2.5. Software testing is aimed at evaluating the quality of a program
and improving it by identifying any defects and potential problems
further resolved by developers. MORPHEMIC is a complex multi-
cloud solution, based on Melodic which is a framework that supports
automated deployment of both data and the applications processing
the data, based on the constraints set by the organisation owning the
data and the application. MORPHEMIC contains a variety of
modules, created by the cooperation of many people and
organizations. The Quality Assurance approach was based on ISTQB
standards and the whole consortium was included in the testing part.
Therefore, it is crucial to put extra attention to testing, preparing and
executing test cases, managing the lifetime of test cases, and
reporting issues.

Coordinated test results and resolution of detected problems are
reported in a specialised tool. Based on that, this Deliverable contains
a report that was created to show the possibilities of fixing issues
encountered during the process of moving from Release 2.0 to
Release 2.5. Both tests based on previously created test cases and
reported issues with resolutions are summarised in this document.

H2020-ICT-2018-2020
Leadership in Enabling and Industrial
Technologies: Information and
Communication Technologies

Grant Agreement Number
871643

Duration
1 January 2020 –
30 June 2023

www.morphemic.cloud

Deliverable reference
D4.6

Date
25 November 2022

Responsible partner
7bulls.com

Editor(s)
Katarzyna Materka

Reviewers
Ali Jawad Fahs, Alexandros Raikos

Distribution
Confidential

Availability
morphemic.cloud

Author(s)
Jakub Pacześ, Joanna Chmielewska

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 871643

D4.6 Test report for prototype release

Page 2

Revisions

Date Version Partner Description

15.11.2022 0.1 (draft) 7bulls First Draft

22.11.2022 0.2 7bulls Second draft

25.11.2022 0.3 7bulls Final

05.12.2022 1.1 Activeeon First review

12.12.2022 1.2 7bulls Adjustments

D4.6 Test report for prototype release

Page 3

Table of Contents

1 Introduction .. 5
1.1 The scope .. 5
1.2 Audience ... 5
1.3 Structure of the document .. 5

2 Testing methodology ... 6
2.1 Test Case creation .. 6
2.2 Life cycle of a test case .. 7
2.3 Test documentation .. 7

3 Installation Guide ... 8
3.1 Technical Requirements ... 8
3.2 Recommended installation procedure .. 9
3.3 Basic configuration of MORPHEMIC platform .. 10

3.3.1 Loading system profile with aliases created for MORPHEMIC ... 10
3.3.2 Starting MORPHEMIC platform ... 10

4 Performed test cases ... 10
5 Reported issues .. 11
6 Conclusions .. 13

D4.6 Test report for prototype release

Page 4

List of Figures

Figure 1 Creating a Test Case in JIRA .. 7

List of Tables

Table 1 Accessible ports .. 8
Table 2 Test cases executed in MORPHEMIC release 2.5 ... 11
Table 3 Issues in Release 2.5 ... 12

D4.6 Test report for prototype release

Page 5

1 Introduction

1.1 The scope
Testing is an essential part of every huge project created by the cooperation of many groups and people. To ensure
quality and reliability, it is crucial to follow all procedures of testing, prepare and execute test cases, report any issues
and take care of the whole lifetime of the test case or issue. Test cases created for release 2.5 are both for checking new
functionalities and providing regression tests.

All new functionalities introduced during Release 2.5 such as:

• using multiple BYON nodes

• support of the new architecture (armv7 and armv8) of the EDGE nodes

• deployment of resources in OpenStack

needed to be formally tested. BYON functionality was already available and it was extended to more than one on-
premises node

The main idea and a core of MORPHEMIC project is a multi-cloud concept and consequently it is extremely important
to verify the continuous employability of all the supported cloud providers. In earlier releases, due to availability,
popularity and partners interest, most of the testing focused on AWS resources so in this release OpenStack resources
were crucial to check project goals. Regression was an important case as there were many fixes for issues reported
within the forecasting feature.

Release 2.5 was initially planned for 31th of August 2022, but we encountered problems with OpenStack platform
configuration, available resources and networking problems, not allowing us to deploy our test applications on
OpenStack resources. Some essential fixes for issues from previous release were crucial, and some of the resources were
focused on them as a priority before completing tasks for release 2.5. Due to encountered unexpected situation with
environments, the consortium decided to change a scope of release requirements to resolve further complication at time
when they appeared to keep the quality of the platform and reduce further workload that may appear when old problems
are left behind for further releases. To avoid additional work in the future all issues were addressed and the effective
release date was moved to 15th of November 2022.

First part of this document is focused on presentation of MORPHEMIC basic technical information, such as technical
requirements of the environment for proper installation of the platform and approach to meet the requirements that were
made during tests of the platform. This document also presents information about the documentation part of the test for
the MORPHEMIC project.

1.2 Audience
This deliverable is intended for those involved in the software quality assurance process and their outcome:

• mandatory for test teams and architects:

o the test team needs to know what the test case creation process is, what the life cycle of the test case

is, and which elements the test case includes

o architects must check whether the test cases are consistent with the (system) specifications

• recommended for developers:

o developers should know what the life cycle of the test case is and how the system will be tested

• optional for the rest of the project members.

1.3 Structure of the document
This deliverable presents the following information contained in given chapters:

D4.6 Test report for prototype release

Page 6

2- Testing methodology- description of test approach used during project

3- Installation guide- system requirements, installation procedure and configuration of the platform

4- Performed Test cases- contains list of Test Cases

5- Reported issues- contains list of issues reported in JIRA tool with statuses

6- Conclusions- contains summary of this document.

2 Testing methodology

Approach to provide quality to the project was based on ISTQB guidance (https://www.istqb.org) coordinated by
personnel with Foundation Level certificate in this area. Software testing is performed to assess its quality and to reduce
the risk of a failure in operation. The testing process consist of many stages such as planning, monitoring, creating,
conducting the tests, reporting progress and results and final assessment. For every development activity should be a
corresponding test activity. Software development process is based on Agile methodology that focuses on flexibility,
collaboration and efficiency with iterative incremental approach, where planning, executing and evaluating requirements
and solutions evolve through collaboration between self-organizing cross-functional teams. It helped us reduce time
consuming blocking issues and create solutions for the new ones that appearing.

Core components of good Quality Assurance approach such as:

1. unit tests: test the building blocks of an application, typically in isolation from the application’s other units and
components, code level testing prepared and executed by development team

2. integration tests: to ensure that all interacting components are operating correctly together and each
feature/functionality of the system can be successfully executed

3. functional tests: validates the features and operational behaviour of software to ensure that they correspond to
its specifications, at least one separate test environment will be set up

4. regression tests: testing previous features of the system (not delivered in current release), to ensure that they’re
still working properly after a software change

helped us provide a high quality of the MORPHEMIC platform.

In the planning phase we decided what new components and functionalities would be introduced in the new release.
Next, during the development phase, Unit and Integration testing were conducted by the respective development teams.
After the developers finished implementing a new feature or a bugfix, they can open a merge request, where other team
members can leave their comments. To improve the workflow, we used CI/CD pipeline on https://gitlab.ow2.org so,
developers could make changes to the code and then test it and push it out for delivery and deployment. It helps to work
simultaneously on the different components and merge changes into repository as often as possible.

The test process started with a creation of a Test Plan containing specific Test Cases for every functionality, feature and
use case. A test should be carried out for each new element added in development stage and integrated into the system.
To create a Test Case and to report any Bugs we used JIRA (D4.5- Test cases and testing).

2.1 Test Case creation
A test case is a set of test data, pre-conditions, expected results and post-conditions for tested components. A test cases
describes how to perform a specific test and are created by the team of testers.

Test cases are prepared in JIRA https://www.atlassian.com/software/jira
• Open https://jira.7bulls.eu

• Enter your credentials in the fields Username and Password and press the Log In button

• To create a new test case, you need to choose Create tab

D4.6 Test report for prototype release

Page 7

• Fill in all required fields: Project name, Issue Type, Summary (short description or title of the test case), Reporter

(name of the tester that created the test case), choose Priority, Assignee (name of the tester that will perform the

test), Input conditions (basic information about the platform that it’s used), Steps to Complete, Expected Results

• After pressing the Create button a new Test Case is created.

Figure 1 Creating a Test Case in JIRA

2.2 Life cycle of a test case
After we created the Test Case it has a status New. Next step is to accept it and change for TO DO and next for IN
PROGRESS when a team member starting to work on it. If the Test Case is executed without any issues, we are changing
the status for TO TEST and performing all the steps that were given in the description. After that step you can choose
the status DONE (if the results are the same as it was expected) or REOPEN (if there are any problems). At the end of
a cycle, you can choose a status CLOSED but if needed you can always REOPEN it.

After executing a Test Case there could be three possible outcomes:

• Passed- when system works according to the assumptions and received results are the same as expected results

• Failed- when system doesn’t work or works differently than in the assumptions, received results are different
than expected results related or a bug has been created to the test case

• Blocked- when one or more steps are blocked by another test case, one or more steps are blocked by a bug or
part of system is blocked by another part of system which does not work.

Test cases with statuses 'Blocked' and 'Failed' were retested.

2.3 Test documentation
Every time a new feature or new functionality is added, the test documentation is needed so test team works together
with the development teams of all participants, resulting in an improvement of test documentation, test cases and code.

D4.6 Test report for prototype release

Page 8

The objective of the documents is to define the strategy that will be used to test the individual components and the
integrated MORPHEMIC platform. A Test Plan documents all the stages of workflow to verify and ensure that all new
features meet their specifications and requirements. It contains the details of all the processes, resources and goals for a
specific test of the subsystem and component. The documentation explains what software need to be used in the tests
and defines the criteria for passing or failing, also who will perform the tests and all the preconditions and the steps
needed to be followed by the testing team.

3 Installation Guide

3.1 Technical Requirements
For the installation of the MORPHEMIC platform with version from release 2.5 we used 2 different installation setups:

1. Basic installation script has requirements based on r5.xlarge virtual machine from AWS resources we used in
our process of testing and it includes 4 CPUs and 32 GB of RAM. We managed to discover that the biggest
RAM usage is encountered during the installation process and further usage of the platform does not generate
such load on both CPU and RAM. Recommended disk size is 100GB.

2. Second script creates 20 GB of Swap Space on the hard drive allocated to platform installation. This procedure
allowed to decrease the requirement and use r5.large AWS virtual machine during our test which resulted in 2
CPUs and 16 GB of RAM with a cost of little more time for installation of the platform without changes in
further use. Suggested disk space for this setup is 100GB where 80GB are allocated for the Morphemic server
and 20GB to be used as a Swap memory.

Installation script with Swap Space from file installMorphemicSwapUnattended.sh available in repository
https://confluence.7bulls.eu/display/MOR/%5BMAIN+INSTALLATION+DOC%5D%5BMORPHEMIC%5D+RC2.5
+with+SWAP+platform+installation+guide

We need to expose some ports in the machine to allow inbound traffic reaching our services (Table 1).

Table 1 Accessible ports

Port Protocol Component Purpose
22 TCP ssh Console
80 TCP UI frontend Melod UI frontend

443 TCP UI frontend Melod UI frontend SSL

8088 TCP ESB REST API

8095 TCP Camunda UI Process UI

8181
8998
7077
38000
38100
38200
38300
38400
38500

TCP Spark Spark components

61610-
61619

TCP EMS ActiveMQ event broker ports

2222 TCP EMS Baguette server port

1099 TCP EMS ActiveMQ JMX connector port

D4.6 Test report for prototype release

Page 9

8111 TCP EMS REST API of EMS

8078 TCP UI backend Melodic UI backend

2036 TCP CDO Server CDO Server

3077 TCP JWT JWT

2121
4433

TCP webssh webssh

3000 TCP Grafana

8123 TCP mq-http-adapter/UI (optional, if diagnosis endpoint is
used)

8097 TCP Adapter

8880 TCP Proactive Scheduler

33647 TCP Proactive Scheduler

3.2 Recommended installation procedure
Since our target customers is a wide array of developers in different sectors, we aimed at making the server installation
as automated as possible. This can be reflected in the installation steps:

1) First step is provisioning and accessing machine for MORPHEMIC installation and exposing the ports that are
mentioned in the table above. In our case we based our tests mainly on VMs created on AWS resources. The
first thing would be getting access to the VM using ssh connection

2) Then we need to access user's home directory (on AWS VM with ubuntu it would be /home/ubuntu)

3) Download the installation file by cloning the git repository

git clone https://gitlab.ow2.org/melodic/melodic-utils.git

4) Checkout to the branch of release 2.5

cd ~/melodic-utils

and then

git checkout morphemic-rc2.5

5) Run the installation script:

sudo -E ~/melodic-utils/melodic_installation/installMorphemicSwapUnattended.sh

The installation will start by creating Swap Space, this takes some time and reports when it finished. After that the rest
of the installation reports every step in actual time.

D4.6 Test report for prototype release

Page 10

3.3 Basic configuration of MORPHEMIC platform
After installation some basic configuration should be performed to make the MORPHEMIC platform available for
usage.
3.3.1 Loading system profile with aliases created for MORPHEMIC

To load profile created for MORPHEMIC and containing useful aliases that can be used to manage platform:

1. Go to the /home/ubuntu directory. Right after installation following command should be performed:

cd ~/

2. Source the profile file created during installation process:

. .profile

3.3.2 Starting MORPHEMIC platform

To start the docker containers and the integration between them use one of the aliases available in the previously loaded
profile. To do this simply run:

drestart

To check if platform started correctly, please use alias:

mping

This alias lists docker containers used as part of the project with their current status, the platform has started properly
if all of them are in OK status.

4 Performed test cases

This subsection presents a list of executed Test Cases for MORPHEMIC release 2.5. We could divide them into few
groups:

• initial deployment- this group contains all scenarios related to the initial deployment of an application in the
Melodic platform.

• metric management- collection, processing (aggregation), storage and delivery of raw and composite metrics,
as well as CAMEL events based on these metrics

• application creation- test cases related to designing, creating and exporting a CAMEL model

• reconfiguration- reconfiguration of the application based on the new solution found by Reasoning part of the
system

• forecasting module- related to the forecasting module

Table 2 shows the identifier of the executed test cases with a summary of each case.

D4.6 Test report for prototype release

Page 11

Table 2 Test cases executed in MORPHEMIC release 2.5

KEY Name
MORPHTEST-196 2.5 FCR with different reconfiguration options (proactive/reactive)

MORPHTEST-197 2.5 - Create Utility Function by function

MORPHTEST-198 2.5 - Create Utility Function by template

MORPHTEST-199 2.5 - Check NBeats forecaster results for Genom

MORPHTEST-200 2.5 - Check NBeats forecaster results for FCR

MORPHTEST-201 2.5 - Check CNN forecaster results for FCR

MORPHTEST-202 2.5 - Check CNN forecaster results for Genom

MORPHTEST-203 2.5 - Check Prophet forecaster results for FCR

MORPHTEST-204 2.5 - Check Prophet forecaster results for Genom

MORPHTEST-205 2.5 - Check Gluon forecaster results for FCR

MORPHTEST-206 2.5 - Check Gluon forecaster results for Genom

MORPHTEST-207 2.5 - Check eshybrd forecaster results for Genom

MORPHTEST-208 2.5 - Check Arima forecaster results for Genom

MORPHTEST-209 2.5 - Utility function creator: creation by function

MORPHTEST-210 2.5 - Utility function creator: creation by template

MORPHTEST-211 2.5 - Exponential Smoothing Predictor: Simple usage of the core prediction functionality

MORPHTEST-212 2.5 - SLO Severity-based Violation Detector

MORPHTEST-213 2.5 - Installation and deployment of FCR application on AWS

MORPHTEST-214 2.5 - Installation and deployment of two component application on Openstack

MORPHTEST-215 2.5 - Installation and deployment of Genom application on AWS

MORPHTEST-216 2.5 - Installation and deployment of Genom application on AWS

MORPHTEST-217 2.5 - Assure that wrong cloud configuration forbids retrieval of Node Candidates

MORPHTEST-218

2.5 - Morphemic - Deployment of a FCR application on one Cloud Provider on machine with
artifacts from previous deploy

MORPHTEST-221 Deployment of a multipleByon TwoComponentApp on AWS

MORPHTEST-222 Deployment of an Edge DBComponentApp on AWS

5 Reported issues

During the development and testing of the system bugs can be found and reported in JIRA. Whenever an inconsistency
was detected between actual and expected results it was logged in a bug report for further follow up. A bug is a defect
in a component or system that can cause them not performing as they were required and cause failure. Sufficient details
(system environment, steps to follow) to how the bug was detected should be provided for investigating the issue and to
be able to recreate the process when it was first discovered and reproduce the problem. Over its entire lifecycle, a defect

D4.6 Test report for prototype release

Page 12

changing status depending on the progress being made in resolving the issue. After defects/issues were fixed and the resolution
was released, testing was conducted to verify if the resolution was successful and to ensure that the system is working
correctly. The logging is performed directly in JIRA, which is the only official channel for inconsistency reporting for
this project and it helps maintaining communication during resolving the issues.

Table 3 contains bugs reported and resolved within Release 2.5 with KEY, Summary and status

Table 3 Issues in Release 2.5

KEY Name Status
MOR-198 Problem with automatic installation of Proactive Scheduler Closed
MOR-201 Eshyrid forecaster is not sending proper predictions Closed
MOR-206 Ubuntu 18 offer not fetched Closed

MOR-207 Openstack deployment: Bad login and preparInfra stage fail Closed

MOR-208 Error while deploying the application in a private network. Closed

MOR-212 exponential-smoothing does not build - pipeline fails Closed

MOR-215 Genom fails due to jcloud and genom scripts sprint? Closed
MOR-219 EMS fails to start on morphemic-rc2.5 instance Closed
MOR-232 Due to changes of EMS configuration file changes EMS is not starting

properly after new branch build
Closed

MOR-237 Nbeats prediction for FCR is not present in influxDB Closed

MOR-238 Gluon prediction for FCR is not present in influxDB Closed

MOR-239 Exponential smoothing has a problem with connection to broker Closed

MOR-240 Metric for Eshybrid is not included in dashboard for FCR To do

MOR-241 Monitors fail to start on byon node Closed

MOR-243 Grafana dashboard for GENOM gluon number of cores querry has typo Closed

MOR-244 Nbeats prediction missing for GENOM app Closed

MOR-245 Eshybrid metrics prediction for GENOM are missing in DB Closed

MOR-247 Error during commiting transation between scheduler and mariaDB Closed

MOR-248

Duplicate entry 'BYON_NS_2...' for key 'PRIMARY' in multiple BYON
deployment

Closed

MOR-249 Installed 2.5 not working correctly on OpenStack Closed

MOR-250

No event types for GLOBAL grouping in EMS when deploying
multipleBYON TwoComponentApp

Closed

MOR-251 Problem with CDO database on OpenStack Closed

MOR-252 Edge deployment fails at Generating Constraint Problem stage Closed

MOR-253 [ICON] RC3.0 proActive server seems not installed Closed

MOR-254 [RC3.0] drestart shows errors Closed

MOR-256 Error by getting constraint problem. Table doesn't exist. Closed

D4.6 Test report for prototype release

Page 13

MOR-257 docker-compose down does not work in morphemic subfolder Closed

MOR-258 Not integrated components are reported by mping alias as NOK Closed

MOR-259 error by deployment Closed

MOR-261 Scheduler fails to deploy nodes on OpenStack resources Closed

MOR-262 FCR deployment on Openstack results in background process not performed new

MOR-263

[CHUV] RC2.5 Command purgesal throws ERROR 1451: Cannot delete or
update a parent row

Closed

MOR-264

NullPointerException during connection to Resource Manager in
multipleBYON deploy

Closed

MOR-266 Eshybrid metrics for WillFinishTooSoon are missing inDB Closed

MOR-268 Wrong IP in ems logs. To test
MOR-269

Sensitive Values are not waved into the install section of the component install
section

New

MOR-271 2 Exponential smoothing metrics are not present in Grafana New

MOR-273

ICON application problem NullPointerException: null at
org.activeeon.morphemic.model.EmsDeploymentRequest.
getWorkflowMap(EmsDeploymentRequest.java:162) in adapter log

Closed

MOR-278 remove free worker doesnt work New

6 of reported bugs had highest priority, 6 had priority set to high, 17 issues had medium priority.

6 Conclusions

Our approach for release 2.5 allowed us to keep the same performance level, while at the same time lowering the cost
of using the MORPHEMIC platform both for our further tests and usage of target users. We achieved this by not only
adding possibility to use more nodes in BYON feature and adding possibility to use EDGE nodes as new feature, but
by creating new installation script creating Swap Space lowering the platform’s hardware requirements. Encountered
complication connected to OpenStack resources allowed us to learn and prepare for further integration with different
cloud providers.

Consortium agreed to change the quality assurance approach by creating basic test documentation during the deployment
phase of adding new features. This approach gives the opportunity to keep Quality Assurance documentation with high
quality and find possible problems at early stages of development which is crucial for reducing time spent on resolving
issues.

Changes in the components described in the new structure complicated the integration process but were necessary to
add new features with improvement of both possibilities and quality of the MORPHEMIC platform.

During tests of Release 2.5 39 issues were reported and 6 of them were moved for resolution in the next sprint. Those
cases were discussed with reporters and were not blocking work of features planned for Release 2.5. All other issues
were resolved and tested before changing their status to Closed.

