

Final Data, Cloud Application &
Resource Modelling

Modelling and Orchestrating heterogeneous
Resources and Polymorphic applications for
Holistic Execution and adaptation of Models
In the Cloud

Executive summary

CAMEL is a multi-domain-specific language (multi-DSL) that is able
to cover, in a rich manner, multiple aspects that are relevant for the
management of multi-cloud applications. In fact, it has been
demonstrated [1], [2] (see also Section 2.1) that this language is
above competition in terms of multi-cloud application modelling.

In order to cover the modelling of polymorphic applications, CAMEL
was extended to draft version 3.0 (see Deliverable D1.1 [1). This
change was driven by various requirements, drawn from the
MORPHEMIC project. Similarly, the meta-data schema (MDS), a
conceptual model for the Cloud and big data domains, was also
similarly extended with the capability mainly to cover concepts and
relations for various kinds of resources, including hardware-
accelerated ones like field-programmable gate arrays (FPGAs) as
well as network elements. MDS as a formal vocabulary complements
CAMEL in order to enable the enhancement of CAMEL models via
feature hierarchies decorated via MDS elements.

While the aforementioned changes were significant, they were deeply
studied in the course of the MORPHEMIC project so as to improve
them while new requirements came along, mainly from
MORPHEMIC features and use-cases. This has led to further
enhancing and improving CAMEL, which now comes in the form of
a final version 3.0 (v3.0), as well as improving MDS. The goal of this
deliverable is to present these new requirements and their rationale as
well as the enhancements made to both CAMEL and the MDS. These
enhancements are also demonstrated through the exploitation of a
use-case originating from a MORPHEMIC partner.

This deliverable can be studied by both technical and use-case
partners in MORPHEMIC for realising the MORPHEMIC
Preprocessor, improving and enhancing Modelio’s CAMEL graphical
editor, as well as specifying the corresponding use-cases. It can be
quite useful for an external audience that investigates the use of
CAMEL and MDS for supporting polymorphic application modelling
and subsequently management.

H2020-ICT-2018-2020
Leadership in Enabling and Industrial
Technologies: Information and
Communication Technologies

Grant Agreement Number
871643

Duration
1 January 2020 –
30 June 2023

www.morphemic.cloud

Deliverable reference
D1.3

Date
30 November 2022

Responsible partner
FORTH

Editor(s)
Kyriakos Kritikos

Reviewers
Paweł Skrzypek, Sebastian Geller, Geir Horn

Distribution
Public

Availability
www.morphemic.cloud

Author(s)

Kyriakos Kritikos, Yiannis Verginadis, Ioannis Patiniotakis, Adeliya Latypova

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 871643

D1.3 Final Data, Cloud Application & Resource Modelling

Page 2

Table of Contents
List of figures .. 3
List of tables .. 3
1 Introduction ... 4

1.1 Scope ... 4
1.2 Intended Audience ... 5
1.3 Document Structure ... 5

2 State-of-the art revisited .. 5
2.1 Cloud Application Modelling Languages ... 5
2.2 MDS is a semantic vocabulary .. 9

3 CAMEL Further Enhancement ... 9
3.1 Conceptual Analysis .. 10

3.1.1 Original Project Requirements .. 10
3.1.2 New Project & Reconciliation of Existing Requirements ... 10
3.1.3 CAMEL Enhancement Process ... 12
3.1.4 Enhanced CAMEL Version 3.0 ... 13

3.2 Language Implementation ... 28
4 Metadata Schema Extensions .. 28

4.1 Conceptual Analysis .. 28
4.2 Implementation .. 32

5 Use-Case Modelling .. 33
6 Conclusions & Future Work .. 39
7 References ... 41

D1.3 Final Data, Cloud Application & Resource Modelling

Page 3

List of figures

Figure 1 The enhancements (in green colour) to the Attribute class ... 15
Figure 2 Enhancements in CAMEL's deployment meta-model .. 16
Figure 3 Enhancement of CAMEL's requirement meta-model ... 18
Figure 4 Communication & prediction-related enhancements to CAMEL's metric meta-model 19
Figure 5 The definition of a computation chain covering metrics, contexts, schedules, windows and sensors 20
Figure 6 Aggregations of Response Time with different groupings ... 21
Figure 7 Host-based grouping all the way up to most complex metric ... 22
Figure 8 Window processing-related enhancement to CAMEL's metric meta-model .. 24
Figure 9 Excerpt of ICON use-case's CAMEL model showcasing the window pre-processing CAMEL extension 27
Figure 10 The deployment model of the CHUV use-case .. 34
Figure 11 The requirement model of the CHUV use-case .. 35
Figure 12 CHUV's metric model - PART I ... 36
Figure 13 CHUV's metric model - PART II ... 37
Figure 14 CHUV's metric model - PART III .. 38
Figure 15 CHUV's metric model - PART IV .. 39
Figure 16 The constraint model of the CHUV use-case ... 39

List of tables

Table 1 Evaluation of Cloud Application Modelling Languages .. 7
Table 2 Original requirements that led to CAMEL 3.0 draft version ... 10
Table 3 Original requirements for CAMEL 3.0 reconciled .. 11
Table 4 New requirements for CAMEL 3.0 .. 12
Table 5 Changes towards CAMEL 3.0 ... 13
Table 6 Way new CAMEL extension can cover some EPL's Window Pre-Processing Constructs 25
Table 7 MDS Updates (removing properties’ thresholds) .. 29
Table 8 MDS Updates (BYON-related) .. 30
Table 9 MDS Updates (Accelerator-related) ... 31
Table 10 MDS Metrics-related Updates .. 32

D1.3 Final Data, Cloud Application & Resource Modelling

Page 4

1 Introduction

1.1 Scope
CAMEL is a multi-domain-specific language (multi-DSL) that is able to cover multiple domains that are relevant for
the management of the multi-Cloud application lifecycle, including the deployment, requirement and metric domains.
In fact, Achilleos et al. [2] have demonstrated CAMEL as superior to other similar languages in cloud application
modelling in terms of richness, domain coverage, DSL integration level, cloud delivery model support as well as
support for models@runtime [3]. This was a result originating from the evolution of CAMEL within the auspices of
various European projects, including PaaSage, CloudSocket and MELODIC.

The MORPHEMIC project undertook a certain task to further improve CAMEL in order to support the modelling of
polymorphic applications. In this respect, by gathering relevant requirements, and even feedback from previous
projects, it enhanced CAMEL to reach version 3.0 by giving it the ability to completely support the specification of
such applications. The qualitative comparison between CAMEL and other relevant languages in MORPHEMIC
deliverable D1.1 Data, Cloud Application & Resource Modelling [1] demonstrated CAMEL’s uniqueness in terms of
polymorphic application modelling while that deliverable also analysed all the changes made to CAMEL along with
their respective cause, i.e., a specific requirement from those collected.

During the course of the MORPHEMIC project, after its first year, CAMEL 3.0 was carefully examined by both
technical and use-case partners of the project through its documentation and use as well as the participation in relevant
demonstrations. This led to improving some original enhancements made to CAMEL 3.0. Furthermore, the work of
some project features unveiled new requirements that were posed to this multi-DSL language in order to support the
developments in these features. In this respect, CAMEL 3.0 was further improved and enhanced so as to reach a more
final form that is approved by both kinds of partners in the project. The goal of this deliverable is to give insight on
these new requirements as well as to analyse the further extensions and improvements that were made to CAMEL 3.0.
In addition, it demonstrates CAMEL’s further enhancement through a use-case originating from a MORPHEMIC
partner.

The Meta-Data Schema (MDS) is a conceptual model that covers well both Cloud and big data domains. This model is
used as a vocabulary that complements CAMEL as it enables to extend CAMEL models without affecting CAMEL’s
abstract and concrete syntax, i.e., changing CAMEL, with arbitrary feature hierarchies encompassing features at
different levels and their corresponding attributes that characterise them. This support is quite relevant and important
in the context of specifying resource and platform requirements, where the respective domains are large and
continuously evolving, making it rather impossible to be fully covered at the conceptual level by any cloud application
modelling language.

In order to cover the specification of polymorphic applications, MDS was enriched with new concepts, attributes and
relationships focusing mainly on the resource and network domains while some slight enhancements were made at the
big data domain. In the resource domain the focus was more on covering additional resource kinds, including
hardware-accelerated ones like FPGAs and GPUs. As the network domain was originally not covered at all, the
enhancements made to MDS were significant. All these enhancements are deeply analysed in MORPHEMIC
deliverable D1.1 Data, Cloud Application & Resource Modelling [3].

Similarly, to CAMEL, MDS enhancement was studied by both technical and use-case partners of the MORPHEMIC
project. The outcome from this study was that MDS is quite complete. However, some particular changes were
required to be applied to MDS. First, additional artifacts were added to support the modelling of Bring-Your-Own-
Node (BYON) in MORPHEMIC deployments. Second, additional hardware accelerator properties were introduced to
address the modelling requirements of the MORPHEMIC pilots. Third, a new class/concept was generated to support
annotating certain configuration-related metrics in a metric type model.

Last but not least, a final MDS change was applied to reduce its size, especially in terms of the attributes given per
concept. In fact, there were multiple forms of the same concept characteristic/attribute that could be reduced to a
single one. In this respect, during this second project year, MDS was normalised in order to respect this requirement.
The main outcome was that MDS was made more compact and more easily and naturally usable by the project
partners, especially the use-case partners. The latter usability result was achieved in concert with a specific change
made to CAMEL 3.0 in terms of attribute specification.

D1.3 Final Data, Cloud Application & Resource Modelling

Page 5

1.2 Intended Audience
The content of this deliverable should firstly interest the use-case owners of the project who aim at properly modelling
their multi-Cloud, polymorphic applications. Such a modelling can be conducted cooperatively between business
experts and DevOps engineers within the use-case organisation. This content should also interest the technical partners
of the project (researchers, architects, and developers) who need to rely on CAMEL and MDS features in order to
design and implement relevant, and in many cases innovative, features of the MORPHEMIC Preprocessor. This
deliverable is public so it is also open to external audience whose respective roles are the same as those mentioned for
the internal audience. Similarly, to the case of the internal audience, the interested organisations in terms of the
content of this deliverable can be those that aim to exploit CAMEL and MDS to describe their applications and
potentially exploit the MORPHEMIC platform to deploy them as well as those that target further enhancing an
existing platform with features that are relevant to CAMEL and MDS and polymorphic application management in
general.

1.3 Document Structure
The remaining part of this document has been structured as follows:

• Chapter 2 revisits the state-of-the-art in response to the formal review comments with respect to the content of
MORPHEMIC deliverable D1.1 Data, Cloud Application & Resource Modelling, i.e., the predecessor of
deliverable D1.3.

• Chapter 3 explains the enhancements and improvements that have been performed to the new version (3.0) of
CAMEL.

• Chapter 4 analyses the modifications made to MDS so as to better couple it with CAMEL v3.0 in terms of
feature attribute specifications.

• Chapter 5 utilises a use-case from the MORPHEMIC project in order to highlight how the new versions of
CAMEL and MDS jointly enable the complete modelling of a polymorphic application.

• Chapter 6 concludes this document.

2 State-of-the art revisited

2.1 Cloud Application Modelling Languages
This section will define the criteria for comparing and evaluating the CAMEL language to other DSLs and analyse the
superiority of the CAMEL language based on these criteria.

In order to assess all relevant cloud application and service modelling languages that have been developed and
proposed in the past, we rely on the criteria framework proposed by Achilleos et al. [2] that we extend in order to also
cover the polymorphic modelling aspect. The criteria framework includes the following evaluation criteria, which
focus on how well all relevant domains are covered and integrated, which kind of cloud services are supported and
whether the models@runtime paradigm is adopted:

• domain coverage: this criterion signifies which domains from those relevant to the application lifecycle are
covered by a language. We argue that a model-driven approach should be followed by a cloud application
management platform as it enables to automate the various management operations in the application
lifecycle. As such, central to this approach is the notion of a model, which in the context of the Cloud or
multi-Clouds needs to cover well multiple domains, as each of these domains supplies appropriate knowledge
and information which is required for proper cloud application management. These domains include the
following: deployment, requirement, metric, scalability, security, organisation, location, execution, unit, type,
data and provider [2]. In this respect, we use this domain coverage criterion in order to investigate which from
these domains are covered by the state-of-the-art cloud application modelling languages. The possible
evaluation values for these criteria are the following: (a) Low: if the language covers at most three domains,
(b) Medium: if the language covers at most 6 domains and (c) High: of the language covers more than 6
domains.

• integration level: this criterion assesses what is the level of integration, see [2], between the different
domains/sub-languages covered / utilised by a language. A language covering multiple domains might supply

D1.3 Final Data, Cloud Application & Resource Modelling

Page 6

different integration levels, especially when such domains include similar or equivalent concepts. As such, an
integration solution to be adopted by a language must: (a) join equivalent concepts and separate similar ones
into respective sub-concepts; (b) homogenise the remaining concepts at the same granularity level; (c) enforce
a uniform formalism and notation for the abstract and concrete syntaxes; (d) enforce model consistency,
correctness, and integrity. Each of these steps is a prerequisite to the following one while it also demands an
increasing amount of effort. Based on this analysis, the goal of this criterion is to investigate how many of
these steps have been applied by a language. Its evaluation spans the following values: “Low” if only the first
step (a) was applied, “Medium” if steps (a) and (b) were applied, “High” if all steps were applied, and “N/A”
if none of the steps was actually applied. The last evaluation value maps to the case where a language utilises
some domain-specific languages (DSLs) as they are. This leads to the following disadvantages: (a) it raises the
DSL complexity, since each DSL has its own abstract and concrete syntax; (b) it steepens the learning curve
and increases the modelling effort for the same reason; (c) model duplication for similar or equivalent
concepts; (d) manual validation of cross-domain dependencies that is error-prone and costly in effort and time.

• delivery model support: this criterion unveils which kinds of cloud services are supported by a language.
A cloud application might utilise and integrate different kinds of services, which map to the three main cloud
delivery models (IaaS, PaaS, & SaaS) and recently to the fourth one, the serverless or FaaS (Function as a
Service). Each from these kinds of services adds a different capability to the cloud application or its
management. An IaaS service provides the right, resource-rich environment for hosting application
components. A PaaS service provides for a richer environment with tools and runtimes installed for faster and
more reliable installation and execution of application components while it can also offer the use of
middleware services. A SaaS or FaaS service enables to realise parts of the application functionality, thus
reducing its implementation time and cost. In this respect, the more kinds of cloud services are utilised by an
application, the better for its provisioning and management. As such, it is essential if a cloud application
language can provide support for searching and integrating such services through the ability to specify
deployment options and constraints/requirements related to these services. For instance, it could specify the
actual runtime needed for installing and executing an application component as a requirement for the
discovery of a PaaS service. As another example, it could specify resource constraints that must be supported
by the IaaS service to be used for hosting an application component. Based on the above analysis, the goal of
this criterion is to investigate which from these cloud service types are supported by a cloud application
modelling language. As such, a language has an evaluation value of “IaaS” if it supports the use of IaaS
services, of “PaaS the use of PaaS services, “SaaS” if it supports the use of SaaS services and “FaaS” if it
supports the use of FaaS services. Obviously, a language can get multiple evaluation values depending on
whether it can support one or multiple kinds of cloud services.

• models@runtime support: this criterion signifies for which domains is the models@runtime paradigm
adopted by a language [3]. This paradigm enables the automatic provisioning of multi-cloud applications
while it can be easily implemented using the type-instance pattern [3]. As such, we particularly argue that this
type-instance pattern must be implemented at least in the deployment and metric domains. In the deployment
aspect, it allows to automatically adapt the components and VM instances in the deployment model based on
scalability decisions (e.g., scale out an application service/component and its underlying VM). In the metric
aspect, the deployment adaptation is reflected also on the monitoring infrastructure. This criterion investigates
the actual domains for which the type-instance pattern has been implemented by a cloud application modelling
language. In this respect, the evaluation of a language spans the values of the different domains relevant to the
cloud application lifecycle like “Deployment”, “Metric”, “Data” and “Execution”. Obviously, a language can
take multiple evaluation values depending on how many from its domains follow this type-instance pattern.

In our view and based on the requirements given in section 3.1.1 of MORPHEMIC deliverable D1.1 Data, Cloud
Application & Resource Modelling [3], a cloud language can support polymorphic application modelling when it is
able to satisfy the following additional criteria:

• application architecture variability: this criterion investigates whether a language is able to capture different
forms of application components and thus cover subsequently the different variations that an application
architecture can have.

• component configuration variability: this criterion examines whether a language is able to capture any kind of
configuration that a component might have. This should include script, container, cluster, serverless, PaaS and

D1.3 Final Data, Cloud Application & Resource Modelling

Page 7

accelerated resource configurations. Thus, the higher is the number of the different configuration kinds
captured, the better is the language.

• component complexity: application components in one form can be single, fine-grained elements and in
another form should be split into other simpler components, thus being complex and coarse-grained in nature.
This indicates the need for a language to support the specification of both single and complex components,
where the latter can be realised through a composition of other components of smaller complexity.

Based on the above, enhanced criteria framework, we have analysed 14 provider-independent, state-of-the-art cloud
application / service modelling languages, including CAMEL (v2.0 & v3.0) [2]. As provider-independence is a crucial
characteristic in order to support cross- and multi-Cloud deployments. Please note that in comparison to
MORPHEMIC deliverable D1.1 Data, Cloud Application & Resource Modelling content, we have added Kubernetes
YAML as the “industry reference” to cloud application management. We could also add other languages like the one
utilised in Juju1 and OAM2 but these languages cover very few domains and thus do not have very good evaluation
values. Thus, it was decided to not include them in the evaluation. The evaluation results are depicted in Table 2.

These results map to those that have been already produced for the first 4 evaluation criteria in [2] and have been
extended through the assessment of the three polymorphic-modelling related criteria. The latter criteria have been
assessed as follows:

• application architecture variability: if a language does not support at all the modelling of component forms, it
has a “Low” evaluation value. If it indirectly supports multiple component forms, it has a “Medium”
evaluation value. Otherwise, it has a “High” evaluation value.

• component configuration variability: if a language supports one or two configuration kinds, it has a “Low”
evaluation value. If it supports three to four kinds, it has a “Medium” evaluation value. Otherwise, it has a
“High” evaluation value.

• component complexity: if a language does not make explicit the distinction of single and complex
components, it has a “Low” evaluation value. If a language makes this distinction but does not properly model
complex components, it has a “Medium” evaluation value. Otherwise, if the language completely models
composite components as agglomerations of other components, it has a “High” evaluation value.

Table 1 Evaluation of Cloud Application Modelling Languages

Language D
om

ai
n

C
ov

er
ag

e

In
te

gr
at

io
n

L
ev

el

D
el

iv
er

y
M

od
el

Su

pp
or

t

M
od

el
s@

ru
nt

im
e

Su
pp

or
t

A
pp

lic
at

io
n

A
rc

hc
hi

te
c t

ur
e

V
ar

ia
bi

lit
y

C
om

po
ne

nt

C
on

fig
ur

at
io

n
V

ar
ia

bi
lit

y

C
om

po
ne

nt

C
om

pl
ex

ity

Reservoir OVF Extension [4] Low N/A IaaS N/A Low Low Low

Optimis OVF Extension [5] Medium N/A IaaS N/A Low Low Low

Vamp [6] Low N/A IaaS N/A Low Low Low

4CaaSt Blueprint Template [7] Low N/A IaaS, PaaS N/A Low Low Low

TOSCA [8] Medium Medium IaaS, PaaS Deployment* Low Medium Low

Provider DSL [9] Low Medium IaaS N/A Low Medium Low

1 https://juju.is/docs/olm/model
2 https://oam.dev

D1.3 Final Data, Cloud Application & Resource Modelling

Page 8

Language D
om

ai
n

C
ov

er
ag

e

In
te

gr
at

io
n

L
ev

el

D
el

iv
er

y
M

od
el

Su

pp
or

t

M
od

el
s@

ru
nt

im
e

Su
pp

or
t

A
pp

lic
at

io
n

A
rc

hc
hi

te
c t

ur
e

V
ar

ia
bi

lit
y

C
om

po
ne

nt

C
on

fig
ur

at
io

n
V

ar
ia

bi
lit

y

C
om

po
ne

nt

C
om

pl
ex

ity

GENTL [10] Low N/A IaaS N/A Low Low Low

ModaCloudML [11] Medium Low IaaS, PaaS Deployment Low Medium Medium

CAML [12] Medium Medium IaaS N/A Low Low Low

Arcadia Context Model [13] High Medium IaaS Deployment Low Medium Low

StratusML [14] Medium High IaaS Deployment Low Low Low

HCL / Terraform3 Low N/A IaaS, PaaS N/A Low Medium Low

Kubernets YAML4 Low High IaaS Deployment Low Low Medium

CAMEL 2.0 High High IaaS,
PaaS,
FaaS,
SaaS**

Deployment,
Metric, Data

Medium

Medium Medium

CAMEL 3.0 High High IaaS,
PaaS,
FaaS,
SaaS**

Deployment,
Metric, Data

Medium High High

*: TOSCA [8] has a respective interest group which works on extending TOSCA to include the coverage of the
instance level at the deployment domain but the respective outcome is not yet part of the standard. There are also
other extensions like TOSCA4QC [15] and TOSCAdata [16]. They will not contribute something more to the
evaluation and TOSCA assessment result will not change because of these available extensions.

**: CAMEL has a version equivalent to CAMEL 2.0 which includes support for the SaaS level - conducted in the
context of the CloudSocket project [17]

***: CAMEL 2.0 was mapping a component to multiple configurations but only one configuration per component
was always supported (and has been realised in the current version of the Melodic platform).

As it can be seen from Table 2 and also derived from the review by Achilleos et al. [2], CAMEL 2.0 was already
above competition in terms of its domain coverage, integration level, cloud service type coverage and the
models@runtime support. This is due to the following reasons: (a) it supports the models@runtime paradigm in both
the deployment, monitoring and data domains; (b) it has tightly integrated the right set of homogeneous DSLs; (c) it
covers the PaaS & SaaS levels apart from the IaaS one; (d) it covers with the appropriate expressiveness level all the
relevant domains to the cloud application management lifecycle. CAMEL 3.0, the new extension of CAMEL, builds
on CAMEL 2.0 in order to enhance it with the polymorphic modelling feature. In this sense, MORPHEMIC has
developed an enhancement of an existing language and its respective modelling framework that does provide support
for polymorphic application modelling, which is a pre-requisite for polymorphic application deployment and adaptive
provisioning. In the next chapter, this new version of CAMEL will be detailed in order to completely comprehend

3 https://www.terraform.io/docs/configuration/syntax.html
4 https://kubernetes.io/docs/concepts/overview/working-with-objects/kubernetes-objects/#describing-a-kubernetes-object

D1.3 Final Data, Cloud Application & Resource Modelling

Page 9

how it enables the full specification of polymorphic applications in terms of all relevant application lifecycle
management aspects.

To conclude this section, we should stress that a model-driven approach for the adaptive provisioning of cloud
applications is not a research hype but a reality. This can be proven by the various cloud service and platform
providers who have supplied specific languages in order to provide support for this kind of application provisioning.
For instance, just take into account Cloud Formation or ARM DSL. However, the use of such languages favours
provider lock-in, especially when they are tight to the respective cloud platforms that offer them. Even if this might
not be always the case, as it was assessed in a recent paper of ours [18] all these languages are not yet ready for
supporting multi-Cloud applications. So, imagine their inadequacy in also covering polymorphic, multi-Cloud
applications.

2.2 MDS is a semantic vocabulary
As indicated in the previous chapter, MDS is a semantic vocabulary / conceptual model that complements CAMEL as
it enables to enhance the semantics of CAMEL model elements especially in large domains which are continuously
evolving. Such an enhancement is conducted by utilising annotations without affecting the syntax of the CAMEL
language or its conceptual model. Thus, the use of MDS is mainly restrained for semantic annotation purposes of
CAMEL models.

In this respect, MDS is not actually an ontology and does not play a competitive role with respect to ontologies,
domain-specific ones or general, although as a semantic vocabulary it could be utilised in a similar manner with
ontologies for semantic annotation purposes, while it can also have a semantic, ontology-based encoding. To this end,
the state-of-the-art analysis that was performed in the context of MORPHEMIC deliverable D1.1 Data, Cloud
Application & Resource Modelling in terms of MDS-related domains targeted mainly to analyse the relevant literature
in those domains. The main analysis goal was to showcase which semantic approaches have inspired MDS in each
relevant domain and have been utilised as a basis for the conceptual enhancement of MDS through the re-use of
relevant concepts, properties and relationships.

In any case, we do not preclude the semantic enhancement of MDS in the near future in order to support some kind of
inferencing tasks that could be relevant for the Cloud (super-)domain. For instance, MDS could be exploited for
inferring the consistency between the annotations and the remaining content of a CAMEL model. As an example,
consider the case where it is indicated that an application component should be situated in a public Cloud as a provider
requirement but, on the other hand, a resource requirement enforces the use of a bring-your-own-node (BYON) node
for hosting that application component. This consistency checking that could be performed through the use of
semantic rules could enable to bridge the gap between the Unified Modelling Language (UML) based models (like the
CAMEL ones) and their semantic annotations.

3 CAMEL Further Enhancement

As explained in the introductory section, CAMEL 3.0 was in a draft version that has been further enhanced and
improved in order to become finalised. The goal of this chapter is to give an insight on what were the main
requirements that drove these enhancements and to completely analyse them. To this end, this chapter is carefully
broken down into three sections. The first section explains the new requirements of CAMEL, how they were generated
while it gives an overview of its original requirements for polymorphic application modelling and why some of them
have been reconciliated. The second section analyses the changes made to CAMEL by first providing an overview of
these changes and then completely presenting them depending on the domain that they belong from those covered by
CAMEL. The third section finally supplies some implementation details about CAMEL’s current and more complete
version.

D1.3 Final Data, Cloud Application & Resource Modelling

Page 10

3.1 Conceptual Analysis
3.1.1 Original Project Requirements

CAMEL’s 3.0 draft form was produced by generating, collecting and applying a set of requirements that were grouped
into four main categories: (a) polymorphic-modelling related, (b) improvement related, (c) feature-related, (d) use-
case related. The following table provides an overview of these requirements. A deep analysis of these requirements
can be found in MORPHEMIC deliverable D1.1 Data, Cloud Application & Resource Modelling [1].

Table 2 Original requirements that led to CAMEL 3.0 draft version

Requirement
ID Requirement Short Description

Requirement
Group

PM1 Cover new configurations, especially for hardware-accelerated resources Polymorphic-
modelling related

PM2 Make hosting relations non-obligatory for modelling Polymorphic-
modelling related

PM3 Each configuration of a component should come with its own requirement set Polymorphic-
modelling related

PM4 Supporting the modelling of composite application components Polymorphic-
modelling related

IR1 Component re-use across application models Improvement related

IR2 Introduction of technical communication semantics Improvement related

FR1 Support the modelling of predicted metrics Feature related

UR1 Allow the specification of communication requirements Use-case related

3.1.2 New Project & Reconciliation of Existing Requirements

As indicated in the introductory chapter, CAMEL 3.0 was thoroughly investigated and discussed by all partners of the
project. This led to a reconciliation of the CAMEL 3.0 original requirements as well as an improvement on the
extensions made to that language during the first project year. The reconciliation was based on two major axes:
(a) backward compatibility and (b) MORPHEMIC platform development scheduling.

Backward compatibility enforced that all changes to CAMEL from 2.0 to 3.0 should be extensions that do not change
the original structure of CAMEL by removing or re-organising CAMEL meta-model elements, e.g., classes, attributes
and properties. In this way, models conforming to CAMEL 2.0 could still conform to CAMEL 3.0 and are thus still
valid. Such restriction was deemed important based on the main rationale of MORPHEMIC: it is an extension of the
MELODIC platform through the addition of new modules or parts. As such MELODIC platform should not be
changed in order to incorporate the MORPHEMIC Preprocessor.

The MORPHEMIC platform development scheduling is a continuous process that prioritises development tasks which
focus on adding new features or improving existing ones. In this respect, this process led to carefully examining new
CAMEL 3.0 features in order to foresee which ones map to features of the MORPHEMIC processor that will or could
be realised in the course of the project. As such, those CAMEL features that are deemed not necessary could be just
removed from CAMEL, especially if they do not have any research or academic impact.

According to these two axes, CAMEL 3.0 original requirements were reconciled. The decisions made per requirement
are presented in the following table.

D1.3 Final Data, Cloud Application & Resource Modelling

Page 11

Table 3 Original requirements for CAMEL 3.0 reconciled

Requirement
ID Requirement Short Description Reconciliation

PM1 Cover new configurations,
especially for hardware-
accelerated resources

Support for such new configurations is important for the
MORPHEMIC platform so this requirement was not changed.

PM2 Make hosting relations non-
obligatory for modelling

This requirement does not affect backward compatibility while it
is important at the research level. Further, it reduces the
modelling effort of platform users. So, it is kept as is.

PM3 Each configuration of a
component should come with its
own requirement set

This requirement is kept as is, especially as it is absolutely correct
and critical for polymorphic modelling – each configuration leads
to a new component form that comes with its own requirements
and restrictions.

PM4 Supporting the modelling of
composite application
components

This requirement was dropped as it has been decided that
component forms that lead to sub-deployment models (for
composite components) increase the complexity in deployment
reasoning, which is already increased due to the need to support
multiple forms per component, with each form having its own
requirements. Thus, sub-deployment models for composite
components will not be realised at all by MORPHEMIC.

IR1 Component re-use across
application models

Due to the development of CAMEL’s graphical editor based on
Modelio, which can incorporate the ability to drag and drop
components from different models, it has been decided that this
CAMEL feature is not actually needed and thus component re-
use is to be realised at the editor level only.

IR2 Introduction of technical
communication semantics

While this is an important research-oriented feature, it is already
covered partially in CAMEL 2.0 through the use of constraints
involving metric variables. Further, it has been decided by the
consortium not to be implemented in the MORPHEMIC platform
as it is not needed by any use-case partner and is costly in terms
of resources to implement.

IR3 Identification of MDS elements
supported by the MORPHEMIC
platform

This was an essential improvement feature that needs to be kept
as it enables the users of the platform to know which metadata
elements are supported and can thus be utilised, e.g., to annotate
CAMEL models.

FR1 Support the modelling of
predicted metrics

It has been decided that the modeller should not model any
prediction metric as prediction is something that is supported by
the platform itself, which can decide autonomously when and
how to use it. As such, this requirement is rather dropped.

UR1 Allow the specification of
communication requirements

This is a feature that could be implemented by the platform in the
near future as it belongs to a use-case requirement. Even if this
feature is not directly but indirectly realised by the platform
through other means, it is considered as an important addition in
CAMEL. So, it has been kept.

Based on the content of the above table, it can be easily inferred that 3 out of the 8 original requirements for CAMEL
3.0 have been dropped. In this respect, the respective extensions (mapping to these requirements) that were performed
to produce CAMEL’s 3.0 draft version have been removed. Further, due to the need to maintain backward

D1.3 Final Data, Cloud Application & Resource Modelling

Page 12

compatibility, it has been decided that the application meta-model needs to be dropped (see MORPHEMIC deliverable
D1.1 Data, Cloud Application & Resource Modelling [1]). This led to the need to cover an application polymorphic
model through a deployment model at the type level so as to re-use a CAMEL 2.0 feature. Fortunately, deployment
type models in CAMEL do support multiple configurations per component so through the newly introduced mapping
of each configuration to its own requirement set, the application polymorphism modelling is fully supported by
CAMEL 3.0.

During the project’s second year, new requirements came along related to further extending CAMEL or improving it.
These requirements fit perfectly with the aforementioned requirement categories. One requirement is feature-specific,
another is use-case specific and the third one is improvement-specific. These three requirements are summarised in the
following table:

Table 4 New requirements for CAMEL 3.0

Requirement ID Requirement Short Description Type

IR4 Have the ability to specify attribute constraints apart from attribute
values in features

Improvement related

FR2 Enhance metric variables to encapsulate the metric that they predict Feature related

FR3 Introduce control-flow relationships between application components Feature-related

UR2 Allow the specification of window pre-processing activities for the
computation of composite metrics

Use-case related

Requirement IR4 came from the observation of some technical partners that in resource/platform requirements, the
ability to specify non-equality constraints on feature attributes does not exist. This creates issues in expressivity of
CAMEL models and the size of the MDS. Requirement FR2 originates from Feature 2: Proactive Adaptation of the
MORPHEMIC project. It relates to the new characteristic of the MORPHEMIC platform in terms of metric prediction.
While CAMEL’s expressiveness in specifying metrics is quite rich, there was a need to add one particular property in
(composite) metric variables so as to cover the two major possibilities in the production of their values (see
MORPHEMIC deliverable D2.3 Proactive utility: Framework and approach [19]). On the other hand, requirement
FR3 originates from Feature 1: Polymorphic Adaptation feature of the MORPHEMIC project. It relates to the need to
capture control-flow relationships between application components as these can further enable to improve the
application deployment via the deployment reasoning process. Finally, requirement UR2 originates from the ICON
use-case [20], [21] where it is required to perform a new form of window processing, which is not currently supported
by CAMEL. All these requirements and the way that they have been implemented are analysed in detail in Section
3.1.4.

3.1.3 CAMEL Enhancement Process

CAMEL 3.0 was produced as a draft version at the end of the first project year. It was then validated by both technical
and use-case partners through a series of workshops and telcos. From these telcos, valuable feedback was obtained in
the form of the two axes aforementioned, which led to the reconciliation of the respective requirements. Afterwards,
the development of CAMEL took the following form:

• First, the reconciliated version of CAMEL was named as CAMEL-3.0-draft and it was incorporated as a
(feature) branch5

• Next, the respective new requirements were received. Each requirement was treated as a new feature branch
that was incrementally developed by the previous one. This led to the following transitions:

5 https://www.atlassian.com/git/tutorials/comparing-workflows/feature-branch-workflow

D1.3 Final Data, Cloud Application & Resource Modelling

Page 13

o From CAMEL-3.0-draft to CAMEL-3.0.1 covering FR2
o From CAMEL-3.0.1 to CAMEL-3.0.2 covering FR3
o From CAMEL-3.0.2 to CAMEL-3.0.3 covering UR2
o From CAMEL-3.0.3 to CAMEL-3.0.4 covering IR4

This way of work enabled to validate: (a) the reconciliation of CAMEL and (b) each new requirement as it led to a
new minor version which could be immediately studied by both technical and use-case partners. Further, this way of
work will be followed also for any new requirement or modification that is needed for CAMEL 3.0 in the near future,
either in the context of MORPHEMIC or beyond.

To be noted that each new CAMEL branch incorporates a full implementation of a respective requirement for change
or extension. So, this covers both CAMEL abstract and concrete/textual syntax. In this way, the CAMEL editor can be
used, e.g., by the use-case/technical partners in order to examine a respective sub-version of CAMEL. In any case, an
accompanying documentation for the CAMEL extension/change is produced in order to facilitate the validation task of
the project partners. Furthermore, a dedicated telco/workshop is always organised for that purpose.

3.1.4 Enhanced CAMEL Version 3.0

3.1.4.1 Overview of Changes/Extensions

In order to accommodate for the reconciliation of CAMEL as well as the addressing of new requirements, various
changes have been performed in CAMEL at the abstract and concrete syntax level. The following table summarises
these changes by also supplying their origin. All these changes are deeply analysed in the following sections.

Table 5 Changes towards CAMEL 3.0

Domain Change Rationale Origin

Core Enhancement of attributes to
include their minimum and
maximum values

Have the ability to specify constraints on the minimum
or maximum value of attributes apart from their exact
value.

IR4

Deployment Incorporation of a reference to
a respective requirement for a
Communication

Ability to refer to constraints on the quality of
communication specified via a communication
requirement.

UR1

Deployment Incorporation of a reference
from a configuration to its set
of requirements

A component configuration should have its own
requirement set as different configuration kinds tend to
differ with respect to their requirements. This does not
preclude the existence of common requirements across
all configurations. In that case, such requirements are
directly referenced by the respective application
component.

PM3

Deployment Introduction of new
configuration kinds

As MORPHEMIC aims at supporting new kinds of
resources for hosting application components, such
resource kinds (e.g., hardware-accelerated ones) should
correspond to new configuration kinds for application
components (e.g., image configurations).

PM1

Deployment Introduction of control-flow
relationships between
application components

These relationships enable to make better decisions in
terms of application placement as they can indicate
when application components are actually executed,
such that we can save resources and create them only
when needed. Such relationships are, of course, relevant
mainly for workflow-based applications.

FR3

Requirement Introduction of communication
requirements

Need to introduce a new requirement kind which can
include constraints on the quality of communication

UR1

D1.3 Final Data, Cloud Application & Resource Modelling

Page 14

Domain Change Rationale Origin

between two or more application components.

Metric Object context reference to
communication

The object that is being measured in an object context
within a metric context can be a component, data or now
the communication between components, giving the
ability to define metrics over the communication quality.

UR1

Metric Metric variables can now refer
and encapsulate metrics

Metric variables can now refer to both formulas and
metrics. In the first case, they can be computed by
evaluating these formulas at the beginning of the
application deployment. In the second case, they can be
computed through metric prediction over the current
solution alternative examined by a MORPHEMIC
Solver once enough data for the prediction are available.

FR2

Metric Introduction of window
processings

These new concepts represent a new ability to be
featured by MORPHEMIC in terms of performing
certain kinds of window pre-processing, i.e., processing
measurements (e.g., filter or group them) before they can
enter a window. Only the remaining measurements in
the window after this pre-processing will be used for
computing the respective composite metric’s value.

UR2

Metadata Introduction of implemented
attribute in metadata objects

The MDS is quite large to cover any kind of
conceptualization relevant for Cloud services and big
data. The MORPHEMIC platform supports only a part
of MDS which is signalled to the platform user via this
attribute.

IR3

3.1.4.2 Core Domain Extension

Features in CAMEL represent concepts that can shape arbitrary hierarchies of sub-features and attributes. Each feature
attribute has been regarded as a characteristic of a feature that can take a specific value. Features and attributes are
mainly utilised in CAMEL in order to formulate constraints on resources and platforms in the context of the
corresponding resource and platform requirements. Both features and attributes are annotated through the use of MDS
elements. For example, one resource requirement could relate to a feature mapping to the CPU of a resource (i.e., a
certain MDS concept) with an attribute, mapping to the hasMinNumberofCores property in MDS, that has a value of
4. In other words, this resource requirement indicates that the CPU of the respective resource should have at least 4
cores.

This particular example actually pinpoints to a certain improvement place for both CAMEL and MDS. The
hasMinNumberofCores property seems to be a kind of artificial CPU characteristic in the sense that it carries out some
additional semantics conveying the use of the min operator over the actual value that this characteristic can take in a
VM offering. In other words, characteristics like CPU are always exact and cannot vary over time for a specific
resource such that we can require to take their minimum or maximum value. As such, it is better to represent them
through clear, concise and minimal semantics. This actually indicates the need for CAMEL to support the
specification of attribute inequality constraints apart from equality ones. As the handling of such characteristics
requires the use of non-equality constraints for them. In the current example, it is more intuitive to express something
like the number of CPU cores for a resource should be greater or equal to 4 rather than to say that the minimum
number of CPU cores for a resource should be 4, which does not make sense.

In this respect, we can distinguish between two kinds of attributes:

• Absolute ones whose value does not change in an offering like the number of cores. For such attributes,
there is a clear need, as stated above, that there should be in place attribute constraints that can enable to
restrain the values that these attributes can take in the context of a resource requirement.

D1.3 Final Data, Cloud Application & Resource Modelling

Page 15

• Operator-specific ones whose value can vary in the context of a specific resource like the case of CPU
frequency. Such attributes might be already characterised by minimum and maximum values being supplied
by the providers of the respective offerings in the form of a (value) range. In this case, it does make sense to
have properties in MDS like hasMaximumFrequency and hasMinimumFrequency to properly cover such
attributes and especially their ranges. For such attributes, it might make sense then to specify equality and
inequality constraints over one or both limits of the respective attribute range. For instance, we could
specify that the minimum CPU frequency of a resource should be greater or equal to 2.0.

Before entering into the details how the above problem was confronted in CAMEL, we must indicate that the
aforementioned attribute classification represents an improvement potential of MDS, which was actually employed.
As MDS modelled some absolute attributes as operator-specific ones and the opposite. Thus, this change in CAMEL
has led also to a respective modification to MDS in order to further improve MDS. In fact, as it will be shown in
Section 4.1, MDS size was actually reduced due to having multiple cases where absolute attributes were modelled as
operator-specific (i.e., two properties instead of one were always used to cover an absolute attribute).

The extension that has been conducted in CAMEL to address this issue is shown in Figure 1. The extension concerns
mainly the Attribute class for which four new attributes have been introduced, namely minValue, minInclusive,
maxValue, maxInclusive. The first two attributes indicate the minimum value that a certain feature attribute is
requested to take and when minInclusive is true, the semantics is that the feature attribute should be equal or greater
than the min value (>= operator), while when it is false that the feature attribute should be greater than the min value
(> operator). Symmetrically, the maxValue and maxInclusive attributes indicate the maximum value that the feature
attribute can take and whether it is included (<= operator) or not (< operator). To remind the reader, the existing value
attribute can be used to cover equality constraints on feature attributes (, i.e., the == operator).

By considering the current example, if someone desires to specify that a CPU should have at least 4 cores and a
maximum frequency of 2.0 MHz, then by assuming that the CPU concept in MDS has three relevant attributes,
namely hasNumberOfCores, hasMinFrequency, and hasMaxFrequency, respectively, then these constraints could be
specified in CAMEL through the specification of a feature, annotated via the CPU concept, that has two attributes:

• one Attribute, annotated with MDS hasNumberOfCores property, having the value of 4 for its minValue
attribute and the value of true for the minInclusive attribute

• one Attribute, annotated with MDS hasMaxFrequency property, having the value of 2 for its value attribute

The respective textual specification in CAMEL for this example is shown below:

Figure 1 The enhancements (in green colour) to the Attribute class

3.1.4.3 Deployment Domain Extensions/Changes

The deployment domain has been updated with 4 main modifications/enhancements. All these changes are shown in
Figure 2, which covers the respective part of CAMEL where these changes are introduced / take place. The first

D1.3 Final Data, Cloud Application & Resource Modelling

Page 16

change is communication-related, analysed in Section 3.1.4.3.1, the next two configuration-related, analysed in
Section 3.1.4.3.2, while the last one concerns a new component relationship kind, analysed in Section 3.1.4.3.3.

Figure 2 Enhancements in CAMEL's deployment meta-model

3.1.4.3.1 Communication-Related Change

This change corresponds to an enhancement of the Communication class, which can now refer to a
CommunicationRequirement. This change enables to associate a communication between two or more application
components with the requirement that this communication must satisfy. Such requirement can be related to a set of
constraints on the quality of the communication, covering quality attributes like the latency. These constraints can
have an impact on application placement. For instance, if the communication latency is required to be quite small, the
MORPHEMIC platform might decide to couple the communicating components in the same host.

3.1.4.3.2 Configuration-Related Changes

The first configuration-related change concerns the application polymorphism, which relates to the component
polymorphism in turn. In particular, when an application component is polymorphic, this means that it can have
different implementations that map to different configuration kinds. Thus, logically speaking, each such
implementation and respective configuration might come with its own unique requirements (e.g., resource ones). For
instance, component A might have a VM configuration with the requirement to have 2 CPU cores and 2 GBs of RAM
and a serverless configuration with 1 CPU core and 1 GB of RAM. Such differentiation is logical, if we consider that
VMs include whole operating systems and thus require additional resources in order to operate correctly.
Nevertheless, some requirements might be the same across different configurations of the same component. To this
end, the association between an application component and a set of requirements is still kept. As such, both a
SoftwareComponent and a Configuration are associated with a property to a RequirementSet.

The second configuration-related change relates to the introduction of two new configuration kinds/types in CAMEL
3.0, namely the ImageConfiguration and ContainerConfiguration. The ImageConfiguration, as indicated in
MORPHEMIC deliverable D1.1 Data, Cloud Application & Resource Modelling [1], concerns two main cases: (a) the
identification of a VM image which already includes the respective application component. As such, when a VM is
produced out of this image, the application component will be up and running; (b) the identification of the application
component image from which the respective component can be instantiated in environments which include hardware-

D1.3 Final Data, Cloud Application & Resource Modelling

Page 17

accelerated resources like FPGAs. On the other hand, a ContainerConfiguration is a configuration targeting an
application component that takes the form of a container. Such a configuration specifies the identifier (ID) of the
container image, a feature via which the configuration attributes can be specified as well as the tool/framework-
specific specialised commands for starting up or updating a container-based application component. Please note that it
is assumed that Docker is the default container management tool/framework. If this is not the case, then the actual
container management tool/framework can be specified through an annotation.

3.1.4.3.3 Component Relationship-Related Changes

In workflow-like (Cloud) applications, the application components take the form of (workflow) tasks which map to
ClusteredConfigurations. In this respect, the execution of the application tasks is governed by the control and data
flow of the application workflow. Implicit data-flow relationships, like one component A produces a data item I which
is required as input for Component B, are already captured by CAMEL 2.0. These indicate that one component, e.g.,
B, should be executed after another component, e.g., A. On the other hand, control-flow (application) component
relationships were not covered by CAMEL 2.0. However, both data- and control-flow relationships are quite
important as from them the relative order of execution between application components can be inferred. Such an
ordering along with a good estimation of component execution time can enable to take improved placement decisions.
For instance, if we know that for the beginning, only components A and B are executed but not C, then we can decide
to place only these two components and not the third one. Then, if we know the maximum expected execution time of
A and B, we can infer when C could execute. Furthermore, we could retain the host of the slowest component from A
and B in order to remove that component, when it finishes execution, and install there component C. This can enable
to speed up application reconfiguration time as there is no need to create a new host for provisioning component C.

Based on the above analysis, as CAMEL 2.0 already captured implicit data-flow relationships, it has been decided that
CAMEL 3.0 should cover control-flow relationships. However, such a coverage should not be as complete as possible
in terms of modelling as CAMEL is not intended to replace a workflow language. On the contrary, what needs to be
covered are just the most basic control-flow relationships [22], which can then be utilised in order to build more
composite ones. Such basic relationships are considered as adequate for the purposes of application placement
because: (a) they are enough for inferring the relative execution order between components; (b) do not lead to
increased modelling effort; (c) the complete workflow of the application is not duplicated.

Control-flow relationships (see ControlFlowRelation class) are kinds of ComponentRelations, so they relate two or
more application components together. They can be categorised as follows:

• Precedes: this relationship is associated with one component that precedes in execution order with respect
to a set of other components. For instance, we can indicate that component A is executed before
components B and C

• Sequence: this relationship indicates a sequence of components, which are executed one after the other
• Parallel: this relationship indicates that some components are executed in parallel
• Conditional: expresses a conditional execution relationship when the execution of one component over the

other depends on the evaluation of a specific constraint. If the constraint is not violated, the first component
is executed; otherwise, the second. This resembles if-then-else statements in programming languages

• Switch: in this relationship one from multiple components will be executed depending on the evaluation
result of a specific metric (see associated metric context in this relationship). For instance, if we have a
metric that can take 3 values: 1-3, then if the current metric measurement equals to 1, the first from the
component will be selected for execution; if it equals to 2, the second; and if it equals to 3, the third.
Obviously, the set of possible metric values should have the same size as the set of components.

3.1.4.4 Requirement Domain Extensions/Changes

In this domain, only one addition was incorporated (see Figure 3), relating to the introduction of communication
requirements (see CommunicationRequirement class). They represent a hard requirement kind that needs to be
satisfied at all costs by the platform. Such a requirement kind should be related to a set of constraints over the quality
of a communication (between two application components). As any kind of requirement is a Feature, it has been
decided that the content of the CommunicationRequirement class should be empty. This is a right decision as a feature
can have multiple attributes and can form a hierarchy of sub-features. In this sense, we can specify constraints for

D1.3 Final Data, Cloud Application & Resource Modelling

Page 18

communications in the same way we formulate constraints for resources and platforms. For instance, we can indicate
that the communication latency between communicating components A and B is 100 ms by specifying an attribute
within a CommunicationRequirement element that is annotated with the respective (latency) concept in MDS and has
the value of 100 and the unit of ms.

Figure 3 Enhancement of CAMEL's requirement meta-model

3.1.4.5 Metric Domain Extensions/Changes

Three changes have been performed in this domain which relate to three different requirements for CAMEL
enhancement, namely UR1, UR2 and FR2. These three changes are analysed in the following three sub-sections.

3.1.4.5.1 Communication-Related Change

In order to specify communication-related SLOs as well as optimisation functions, there is a need to specify
communication metrics. In this respect, while CAMEL 2.0 was already rich enough to specify any kind of metric, it
was observed that only metrics related to components and data could be specified, thus the object context of a metric
was restricted not to include any kind of communication-related elements. To this end, in order to provide full support
for communication metrics, the metric domain in CAMEL was enhanced (see Figure 4) through the addition of a
reference from an ObjectContext to a Communication. In this way, the communication puzzle in CAMEL has been
solved as: (a) a CommunicationRequirement could cover constraints on static properties for communications; (b)
SLOs and optimisation functions can cover constraints and utilities related to communication (quality) metrics; (c)
additionally, technical communication semantics now govern the coupling of communicating components at the
instance level. As such, requirement UR1 can be indicated to be completely satisfied by the enhancements made to
CAMEL.

D1.3 Final Data, Cloud Application & Resource Modelling

Page 19

Figure 4 Communication & prediction-related enhancements to CAMEL's metric meta-model

3.1.4.5.2 Metric Prediction-Related Change

As indicated in detail in MORPHEMIC deliverable D2.3 Proactive utility: Framework and approach [19], metric
forecasting is a novel feature of the MORPHEMIC platform which can be exploited after some period since
application execution due to the well-known accuracy issue of inadequate historical input. In particular, during
application initial deployment as well as during the initial attempts for application reconfiguration, it would not be
possible to forecast the performance of application components and in consequence of the whole application when
these components are placed in specific resources, where such a placement decision is considered during application
deployment reasoning. In this respect, the workaround, also applied in the context of previous European projects like
MELODIC, was to provide a specific formula for the calculation of the respective metric variable6 which involved
other metrics or metric variables. Please note here that a metric variable is required for this purpose as we deal with an
optimisation-related variable whose value changes when different placement candidate solutions are examined by a
Solver.

CAMEL 2.0 covered well the modelling of the aforementioned mathematical formula for the production of the values
of the respective metric variable. However, due to the implementation of the forecasting feature, this formula is
applied only initially; when forecasting accuracy is adequate, a forecasted performance value can be computed
instead. In this respect, CAMEL 2.0 was enhanced through the following extension: associating a metric variable with
the metric whose values can be forecasted through that metric’s context. As such, the existing mathematical formula
of a metric variable is applied initially while the reference to the metric is an indication to the platform that the
forecasting feature needs to be applied in order to forecast the metric variable values, whenever this is possible. This
CAMEL extension is depicted in Figure 4 (see MetricVariable class).

For example, suppose that we need to compute the completion time (CT) for an application. By applying the
workaround, we create a metric variable named as CT_var and associate it with the following formula: 𝜃! ⋅ 𝜃"/(𝑐! ⋅
𝑐") 	+ 𝜃#, where 𝜃$ are metrics: 𝜃! represents number of trainings left to do, 𝜃" the percentile bound on task execution
and 𝜃# the elapsed time. and 𝑐$ are metric (decision) variables with 	𝑐! representing the number of instances and 𝑐"
the number of cores. This formula intuitively enables to select the more powerful application configurations when the
application performance is bad and less powerful application configurations when the application performance is too
high. Through the MORPHEMIC platform prediction feature and CAMEL’s respective extension, the metric variable
is also associated with the context CT_Metric_Context of metric CT that measures the application’s completion time.

6 Please note that a metric variable is a decision variable whose value is assessed by a Solver. On the other hand, a metric is something that is
monitored (either by the platform or the application itself).

D1.3 Final Data, Cloud Application & Resource Modelling

Page 20

As mentioned above, this is an indication that the CT metric measurements will be exploited for forecasting purposes
when adequate historical input exists. The respective CAMEL metric model sub-part that shows the definition of the
metric variable CT_var is given below (see more details in MORPHEMIC deliverable D2.3 Proactive utility:
Framework and approach [19]).

3.1.4.5.3 Window Processing-Related Change

3.1.4.5.3.1 Introduction

One of the most critical and important features of the metric domain in CAMEL is the separation of concerns in terms
of application measurement. In particular, sensors and metric formulas cover the measurement computation part,
depending on which kind of metric is being measured, while schedules cover how often the triggering of computations
occurs and windows define the exact data (e.g., raw or composite measurements), collected in between computation
triggerings, to be used for the measurement computation. The following Figure 5 showcases this separation of
concerns while it highlights how these different conceptualisations come together. As it can be seen, contexts are the
ways to group the relevant concepts whose content varies depending on the metric type to be computed. Raw metrics
are sampled according to a schedule through the use of sensors. On the other hand, composite metrics might be
computed from other metrics (either raw or composite) through those metrics’ measurements, which are collected in
well-defined windows while their computation is still triggered via a schedule.

Figure 5 The definition of a computation chain covering metrics, contexts, schedules, windows and sensors

variable CT_var{

template MetricTemplateCamelModel.MetricTemplateModel.Completi
onTimeTemplate

formula: ('(Theta_1 * Theta_2) / (C1 * C2) + Theta_3')

 context CT_Metric_Context

}

D1.3 Final Data, Cloud Application & Resource Modelling

Page 21

Another interesting feature covered in the metric domain concerns the fact that measurements can be grouped
according to a specific criterion and computations can be performed in each group. The criterion currently covered for
the measurement grouping concerns the actual Cloud level being concerned. As such, there are 6 Cloud/grouping
levels:

• PER_INSTANCE: the measurements are collected for each instance of an application component
• PER_HOST: the measurements are collected from multiple instances of an application component situated

in the same host (i.e., virtual or physical machine)
• PER_ZONE: the application/component measurements are collected per each (availability) zone
• PER_REGION: the application/component measurements are collected per each region, covering multiple

zones
• PER_CLOUD: the application/component measurements are collected per each Cloud
• GLOBAL: this is the default level where all measurements are collected for the application or one of its

components, irrespectively from its placement.

As for the definition of a target composite metric (e.g., participating in an SLO), a chain of computations is formulated
(e.g., from a raw metric towards that target composite metric), a grouping can be propagated up until the highest
possible level or might be aggregated to single values at a specific higher level from the current one. This can be
highlighted through two examples. In the first example, shown in Figure 6, the average response time for an
application is computed per host (PER_HOST) and all these host-based measurements are then aggregated at the
highest level to compute a global average (GLOBAL). In the second example, shown in Figure 7, a more complicated
scenario is covered where the measurements at the highest level of computation are still host-based. As it can be seen,
raw measurement values are grouped per host and lead to computing aggregated measurements for two different
composite metrics CM1 and CM2, respectively. Then, the measurements of these two composite metrics are then
aggregated at the highest level again per host in order to compute the values of the highest composite metric, CM3,
which is, in fact, exploited to formulate a certain SLO.

Figure 6 Aggregations of Response Time with different groupings

D1.3 Final Data, Cloud Application & Resource Modelling

Page 22

Figure 7 Host-based grouping all the way up to most complex metric

3.1.4.5.3.2 Issues

As CAMEL metric meta-model is partially derived from Complex Event Processing (CEP) languages, there is one
potential issue which hampers its further adoption. In particular, a rich set of window pre-processing operators is not
offered which leads to two main problems: (a) not all possible use-cases can be properly covered, something that will
be showcased shortly afterwards, (b) in order to compensate for this, some partial solutions can be applied, which
increase the number of hops in the (metric) computation chain by also specifying non-meaningful metrics so as to just
cover the above gap by applying functions in composite metric formulas that map to these window operators.

In order to exemplify this situation, we will rely on a certain use-case from the MORPHEMIC project, the ICON one.
In this use case, there is a need to compute a composite metric by calculating the minimum from the latest raw worker
efficiency measurements, once these measurements are grouped per host, i.e., per each host in which the workers are
deployed. As such, apart from the composite (application) metric, which we call MinimumWorkerEfficiency, we need
to take into account also a raw metric one, called WorkerEfficiency. However, there is the above issue of the gap
between these two metrics which comes with the pre-processing of the raw measurements: we need to first group
these measurements per host before we can compute their minimum by taking the latest raw measurement from each
group. To be noted that both metrics have computations triggered every 30 seconds and that for the composite metric
we have a time-based window size of 30 seconds.

In order to address this gap, various solutions have been inspected but only one has been adopted, which nicely solves
the problem and is still backwards compatible in terms of the metric domain in CAMEL.

First Solution. By considering the current version of CAMEL’s metric meta-model, a first solution that could be
applied would map to creating an intermediate (composite) metric between the other two, placed in the middle of the
computation chain, that we call UniqueWorkerEfficiency. This metric is computed per host every 30 seconds and has a
time-based window of 30 seconds. However, while being a composite metric, it does not have a computation formula
(i.e., it is empty). The rationale is that once a raw measurement is sensed, it is the sole fitting its window for the
respective host and that measurement would propagate to the MinimumWorkerEfficiency metric’s window for the
highest-level computation.

This first solution, while it could solve the metric meta-model’s shortcoming, suffers from three major drawbacks.
First, it introduces a new metric, the UniqueWorkerEfficiency one, thus enlarging the computation chain. Second, it is
not proper and elegant to define a composite metric with no effective computation formula. Third, there is a need for

D1.3 Final Data, Cloud Application & Resource Modelling

Page 23

perfect synchronisation between the different computations at the different levels so as to compute the final, highest-
level measurement properly without any delay or imprecision. On the other hand, this solution does not require
changing the metric meta-model in CAMEL.

Second Solution. The second solution is similar with the previous one. Its sole difference is that it incorporates a new
function that is utilised in the UniqueWorkerEfficiency metric’s computation formula called LATEST/UNIQUE. The
semantics of this function is that it computes the latest value in each window partition/grouping of the respective
(composite) metric. While this solution solves the second from the above drawbacks, the other two still hold.

Third Solution. The rationale for the third solution is that we could incorporate in the metric computation formula
functions which perform some kind of window pre-processing. In the current use-case examined, this would mean that
we do not define any intermediate metric while the computation formula for the MinimumWorkerEfficiency metric
becomes MIN(UNIQUE(WorkerEfficiencyMetric, PER_HOST)). The semantics is that first all the collected
measurements are grouped per host and we take the latest from each group and then we compute the minimum over
the filtered/selected measurements.

This third solution solves all the drawbacks of the first solution. It does not introduce any intermediate metric, as it
only contains meaningful computation formulas and does not require perfect synchronisation. However, it does have
other drawbacks. First, it requires extending the CAMEL editors (textual & web-based) in order to support the
specification of the pre-processing operators/functions and their grouping-related parameters. Second, as the grouping
criterion is now incorporated inside the window grouping/pre-processing function call, the explicit grouping
constructs in CAMEL are more or less useless while this also means that there are two ways to achieve the same
modelling goal which is not desirable in modelling languages (redundancy issue). Third, the semantics of these
functions are not so clear to the modeller, who needs to carefully study CAMEL’s documentation in order to know
how to precisely use them. For instance, for the UNIQUE function, it is not clear whether it returns a single or a set of
values. Finally, and more importantly, as the window pre-processing is applied according to a specific schedule, this
means that the actual, overall window for a composite metric can become quite long between two different, sequential
computation triggers of that metric measurements.

3.1.4.5.3.3 Adopted Solution

Inspired by the third solution and its drawbacks, especially the one that indicates that window pre-processing should
not be mixed with metric computation, the final and fourth solution that has been actually adopted and enforced,
attempts to achieve a clear separation between these two aspects. This final solution slightly enhances CAMEL’s
metric meta-model in order to apply such a separation. Its main rationale is that grouping as well as other window pre-
processing operators need to be supported. Simple grouping stays, for backward compatibility reasons, in the
composite metric context (so as it is right now) while more advanced forms of grouping as well as other major pre-
processing operators become part of the window definition.

The modifications made in this CAMEL’s meta-model are depicted in Figure 8, where existing classes are coloured
with white colour, removed classes and attributes with red and new classes, enumerations, enumeration members,
attributes and references with green. As it can be seen, a Window is associated with zero or more window processings
(mapping to the WindowProcessing concept), which need to be applied in order (i.e., the first processing in the list is
applied first, the second is applied second and so on). As it will be shown later on, the ability to apply multiple
window processings can enable to simulate various operators in CEP languages. Any WindowProcessing has a
specific type and comprises: zero or more grouping criteria as well as zero or more ranking criteria. There are three
types of window processing that are envisioned:

• GROUP: in this type, we cluster measurements in groups according to the grouping criteria defined. We need
to stress here that groupings formulated via a WindowProcessing are more advanced with respect to those
simple ones that are supported by CAMEL 2.0 for two main reasons: (a) the grouping can be performed based
on multiple criteria and not just one; (b) as indicated later on, the modeller can also utilise custom criteria
instead of the basic ones

D1.3 Final Data, Cloud Application & Resource Modelling

Page 24

• SORT: in this type, the measurements are ranked according to the ranking criteria

• RANK: in this type, in each group formulated via the grouping criteria only the latest measurement is kept and
then all measurements retained are sorted/ranked according to the ranking criteria

A criterion, either grouping or ranking, is represented via the WindowCriterion concept. Such a criterion concerns a
specific metric, for which measurements are to be collected in a window and require some sort of pre-processing, and
a specific type. There are 6 fixed types of a criterion (see CriterionType enumeration) mapping to the 5 original
grouping levels covered in CAMEL plus the timestamp one, indicating that measurements can be grouped or ranked
based on their timestamp (i.e., the time moment they were produced). In addition, there is one additional type mapping
to a custom criterion type (see CUSTOM enumeration member). In this case, the modeller needs to specify the actual
criterion via another attribute called custom mapping to a String. This gives the freedom to add special metadata to
measurements that can then be utilised in order to specify grouping/sorting criteria over them. For instance,
measurements could include a tag named user mapping to the related end-user of the multi-Cloud application. As
such, such measurements could then be grouped into different clusters by utilising a grouping-based window
processing having the CUSTOM criterion with the value “user” for the custom attribute. Finally, in case of a ranking
criterion, it is required to also specify whether the ranking will be performed in an ascending or descending order
according to the criterion being modelled.

Figure 8 Window processing-related enhancement to CAMEL's metric meta-model

D1.3 Final Data, Cloud Application & Resource Modelling

Page 25

Another related extension in the metric meta-model concerned the WindowSizeType enumeration where two new
window size types have been introduced:

• TIME_ACCUM: represents a special window that accumulates events until no event comes for a specific time
period

• TIME_ORDER: a (sliding) window that keeps and ranks only some measurements for a specific time period
relative to the measurements of the arrival time

Such an extension makes CAMEL even more complete with respect to the window size types that it can support.
Furthermore, these new window size types could be regarded as special pre-processing operators based on their
semantics.

The last change made to the CAMEL’s metric meta-model concerned moving the window reference from
MetricContext to CompositeMetricContext with the rationale that it is only meaningful to specify windows of
measurements for composite metrics. This change is still backward compatible as there is no real CAMEL model
structure change because the use of windows for raw metrics is obviously not realistically applicable in any possible
or existing CAMEL model.

This new solution, while slightly extending CAMEL’s metric meta-model, is quite elegant and addresses all the
drawbacks of the previous solutions, which actually become its own merits. First, it does not lead to any increase in
the length of the metric computation chain. On the contrary, it tends to decrease it. Second, it does not mix metric
computation with window pre-processing. Third, it does not require any kind of synchronisation so as to achieve
precise metric measurements. Finally, and more importantly, it strengthens CAMEL’s metric meta-model by allowing
to apply multiple different window pre-processing operations, thus enabling to cover further more use-cases in multi-
cloud application modelling and monitoring.

The following table showcases how well-known window pre-processing constructs (or construct combinations) in the
Esper’s Event Processing Language (EPL) for CEP7 can be covered via the use of CAMEL’s extended metric meta-
model:

Table 6 Way new CAMEL extension can cover some EPL's Window Pre-Processing Constructs

ESPER’s EPL Window Pre-
Processing Construct(s)

Construct Semantics CAMEL Coverage

rank(groupCriteria,
topMeasurementNum, rankingCriteria)

Only the latest measurement per
group is kept, then all
measurements are ranked and only
a specific top number from them is
finally kept

Apply a RANK window processing
with all necessary grouping and
ranking criteria in a window with a
specific size (topMeasurementNum)

groupwin(groupCriteria) Cluster the measurements
according to the groupCriteria

Apply a GROUP window processing
with all necessary grouping criteria

groupwin(groupCriteria)#length(num) Cluster the measurements
according to the groupCriteria and
retain latest num measurements per
group

Apply a GROUP window processing
with all necessary grouping criteria on
a sliding window with a specific size

unique(groupCriteria) Cluster the measurements
according to the groupCriteria and
retain only the latest measurement
per group

Apply a GROUP window processing
with all necessary grouping criteria on
a sliding window with a size of 1

7 http://www.esper.espertech.com/release-5.2.0/esper-reference/html/epl_clauses.html

D1.3 Final Data, Cloud Application & Resource Modelling

Page 26

ESPER’s EPL Window Pre-
Processing Construct(s)

Construct Semantics CAMEL Coverage

sort(topNum, sortCriteria) Sort the measurements according to
the sortCriteria and then keep the
highest topNum ones

Apply a SORT window processing
with all necessary ranking criteria on a
sliding window with a size of topNum

groupwin(groupCriteria)#sort(topNum,
sortCriteria)

Cluster the measurements
according to the groupCriteria, then
sort them in each group according
to the sortCriteria and then keep the
topNum elements in each group

Apply first a GROUP window
processing with all grouping criteria
and then a SORT window processing
with all necessary sorting criteria on a
sliding window with a specific size
(topNum)

length(size) A sliding window with size
measurements

Define a sliding window with a
specific size

length_batch(size) A fixed window with size
measurements

Define a fixed window with a specific
size

time(timePeriod) A sliding window with a time-
based size

Define a sliding window with a
specific timePeriod as its size

time_batch(timePeriod) A fixed window with a time-based
size

Define a fixed window with a specific
timePeriod as its size

time_length_batch(timePeriod,size) A fixed window where its size
becomes fixed when either the
timePeriod passes or a specific size
of measurements arrives

Define a first-match window with
both a time-based and a measurement-
based size

time_accum(timePeriod) A sliding window that accumulates
events until no event is reached
within a specific time period

Define a time-accumulating window
with a time-based size

lastevent Keep only the latest measurement Just apply a sliding window with a
size of 1

firstevent Keep only the first measurement Just apply a fixed window with a size
of 1

firstunique(criteria) Keep only the first from all
measurements having the same
value on the given criteria

Apply the GROUP window
processing with all necessary
grouping criteria on a fixed window
with a size of 1

timeorder(timePeriod) Order events that come out of order
where each event is kept for a
specific time period relative to its
arrival time

Apply a sliding window with a
TIME_ORDER size type

#length(num)#time(period) A sliding window that retains at
most num measurements that come
within a specific period only

Apply a sliding window with a
BOTH_MATCH size type with num
as measurement size and period as the
time size

ICON Use Case. By considering, now, the ICON use-case, i.e., our running example, we indicate how this CAMEL
extension can lead to its proper modelling (see also the figure below for an excerpt of ICON use-cases CAMEL model
focusing on the metric domain and especially this CAMEL extension). The WorkerEfficiency, as being a raw metric,
does not require any kind of different treatment. So, the sole metric being affected is the MinimumWorkerEfficiency.

D1.3 Final Data, Cloud Application & Resource Modelling

Page 27

For this metric, we leave untouched its schedule, which should be 30 seconds. Its metric computation formula is also
the same: MIN(WorkerEfficiency). However, its window has been altered. In particular, it now incorporates a
grouping-based window processing (i.e., its type is GROUP). This processing includes one grouping criterion, which
has as its type the value of PER_GROUP and applies to the WorkerEfficiency metric. Further, this window is sliding
with a size of 1, which means that only the latest measurement is kept per each group formulated (per host). All these
changes now enforce that the window of the MinimumWorkerEfficiency metric should be pre-processed such that its
measurements, mapping to the WorkerEfficiencyMetric, are first grouped per host and only one measurement is
always kept per group. This, now, precisely covers the original requirements of the ICON use case, which is an
indication that this CAMEL extension is quite proper and sufficient to cover this as well as additional use cases.

Figure 9 Excerpt of ICON use-case's CAMEL model showcasing the window pre-processing CAMEL extension

D1.3 Final Data, Cloud Application & Resource Modelling

Page 28

3.2 Language Implementation
As already indicated in section 3.1.3, the new minor versions of CAMEL 3.0 were implemented by modifying and
extending both the abstract and textual syntax of the very first draft version of CAMEL 3.0. The abstract syntax was
enhanced by modifying CAMEL’s meta-model in ECORE8. Such a modification included the incorporation of new
classes, attributes and properties, the modification of existing ones plus the migration of the latter in different places
without changing CAMEL’s main structure with respect to CAMEL v2.0. It also involved the updating of the OCL
rules that govern the semantic cross- and intra-model validation of CAMEL models. This updating took place inside
the ECORE model of CAMEL through the use of the OCL9 Editor10 of the Eclipse Environment11. Out of the ECORE
model of CAMEL, its respective domain code has been automatically produced by exploiting the automatic code
generation facilities of the Eclipse Environment. Such code can then be exploited for the management of CAMEL
models, where such a management involves tasks like CAMEL model creation, validation, storage and
reading/parsing. Please also note that the (enhanced) CAMEL framework supports two encodings of CAMEL models:
XML-based (XMI) and textual (conforming to CAMEL’s textual syntax - see paragraph below). This means that
models in any of these two encodings can be written or read by a computer program.

The textual syntax updating relied mainly on modifying the Xtext12 model of CAMEL via the use of the Xtext Editor
of the Eclipse Environment13. Please note that such an updating was deemed more suitable in comparison to the re-
generation of the whole textual syntax (Xtext) model from scratch due to the effort required in the latter case to
modify this model according to specific textual/formatting patterns that have been followed from the very first version
of CAMEL. Apart from modifying the Xtext model, additional, lightweight modifications were performed also in
those places related to the documentation of CAMEL where information about CAMEL classes is displayed when the
user hovers over a specific CAMEL model element.

In the following, we supply relevant implementation links related to the latest minor version of CAMEL 3.0, i.e.,
v3.0.4:

• Source-code: https://gitlab.ow2.org/melodic/camel/-/tree/camel-3.0.4
• Meta-model: https://gitlab.ow2.org/melodic/camel/-/blob/camel-3.0.4/camel/camel/model/camel.ecore
• Documentation: https://confluence.7bulls.eu/display/MOR/CAMEL+3.0
• Textual Editor Installation Instructions:

https://confluence.7bulls.eu/display/MEL/%5BCAMEL%5D+Camel+2.0+Eclipse+%28oxygen%29+editor+i
nstallation

4 Metadata Schema Extensions

4.1 Conceptual Analysis
In MORPHEMIC deliverable D1.1 Data, Cloud Application & Resource Modelling [1], we provided an extensive
update of the vocabulary entitled Metadata Schema (MDS) which was initially introduced in the frame of the Melodic
project [23]. This schema is quite important for the modelling framework used in MORPHEMIC for driving,
updating, and maintaining the deployment of multi-component applications that exploit multi-Cloud and edge
resources. Specifically, MDS provides a number of classes and data and object properties that correspond to semantics
used for describing requirements, constraints, and offerings’ characteristics in multi-Cloud placement decisions. This
kind of semantic description constitutes the formal means for extending the CAMEL language with appropriate
concepts related to big data management, the optimisation of the placement of processing jobs, and access control in
multi-Cloud environments. In this way, CAMEL does not have to incorporate any hardcoded terms for expressing

8 https://www.eclipse.org/modeling/emf/
9 https://www.omg.org/spec/OCL/
10 https://projects.eclipse.org/projects/modeling.mdt.ocl
11 www.eclipse.org
12 https://www.eclipse.org/Xtext/
13 https://www.eclipse.org/Xtext/documentation/308_emf_integration.html

D1.3 Final Data, Cloud Application & Resource Modelling

Page 29

e.g., placement constraints but instead it exploits the MDS easily extensible and reusable vocabulary. As it was
detailed in MORPHEMIC deliverable D1.1 Data, Cloud Application & Resource Modelling, MDS comprises the
Application Placement, Big Data and Context Aware Security models that group a number of classes and properties to
be used for defining where a certain big data application should be placed; what are the unique characteristics of the
data artefacts that needs to be processed; and what are the contextual aspects that may be used for restricting the
access to the sensitive data.

As part of the WP1 work, we supported the process of application modelling of the use case providers based on which
we provided additional artefacts or changes required according to their modelling needs. Here, we briefly discuss four
important changes to MDS. The first change involved the simplification and reduction of certain MDS properties in
order to avoid using concepts or properties variants that can more easily be expressed with the use of operators in
CAMEL 3.0. For example, instead of having two different data properties for denoting integers that capture the
minimum (hasMinNumberofCores) and maximum number (hasMaxNumberofCores) of CPU cores available or
requested, respectively, we use just one i.e., hasNumberofCores and let CAMEL with proper operators express the
maximum or minimum thresholds. In the following table, we provide the changes made in such properties. We
mention only the relevant classes (with their parent classes as a path) and the properties affected by the change.

Table 7 MDS Updates (removing properties’ thresholds)

 Class Taxonomy
Levels

Properties Description

IaaS/Processing/CPU This class refers to IaaS resources that use Central Processing
Units (CPUs) for carrying out software instructions that specify
the basic arithmetic, logical, control and input/output (I/O)
operations.

 hasNumberofCores This property denotes an integer that captures the number of CPU
cores available or requested.

 hasMinNumberofCores Removed

 hasMaxNumberofCores Removed

IaaS/Processing/Memory/
ProcessingMemory/RAM/

TotalMemory

 This subclass captures the desired or offered value of the
virtualised memory storage dedicated for frequent program
instructions.

 hasSize This property associates the Total Memory class with an integer
that represents the amount of memory capacity required or
offered.

 hasMin Removed

 hasMax Removed

IaaS/Processing/
Accelerator/GPU

 This class refers to IaaS resources that use graphics processing
units (GPUs), i.e. specialized electronic circuits initially designed
to rapidly manipulate and alter memory to accelerate the creation
of images in a frame buffer.

 hasConcurrentWorkgroups This property denotes an integer that represents the work-groups
that may be simultaneously executed on compute units supported
by a certain GPU.

 hasMaxConcurrentWorkgro
ups

Removed

 hasNumberofCores This property denotes an integer that captures the number of GPU
cores available or requested.

D1.3 Final Data, Cloud Application & Resource Modelling

Page 30

 Class Taxonomy
Levels

Properties Description

 hasMinNumberofCores Removed

 hasMaxNumberofCores Removed

IaaS/NetworkEntity
/HardwareNetworkEntity
/NetworkNode /Interface

 This class models a point of interconnection between a device and
a private or public network associated to an IaaS resource that
may involve Cloud or Edge nodes.

 hasNumberOfInterfaces This property expresses the amount of network interfaces an IaaS
offering is requested to have or already has.

 hasMinNumberOfInterfaces Removed

 hasMaxNumberOfInterfaces Removed

IaaS/Storage/Capacity Removed

 hasMin Removed

 hasMax Removed

IaaS/Storage

 hasCapacityUnit The hasUnit property was moved and renamed as a data property
of the Storage class. It refers to a string that indicates the unit for
measuring the storage capacity offered or required.

 hasCapacity This data property is introduced to capture the required or offered
storage capacity provided in an IaaS offering. This property can
be used with the appropriate CAMEL 3.0 operator to define
maximum and minimum threshold for the storage capacity.

The second change involved the necessary additional artefacts to support the modelling of Bring-Your-Own-Node
(BYON) in MORPHEMIC deployments. This addition is related to the IS-Wireless use case where it was important to
describe capabilities or requirements of BYON devices in the pilot demonstration. Therefore, we have extended the
IaaS class of the MDS Application Placement Model as it is presented in the table below.

Table 8 MDS Updates (BYON-related)

 Class Taxonomy
Levels

Properties Description

IaaS/BYON This class refers to certain IaaS resources that can be introduced
in a processing topology by the operator or the user of a certain
cloud application. Bring-Your-Own-Node (BYON) can be
considered as a «mobile» hosting resource with limited but not
negligible processing capacity that can be easily installed, at any
given time, near other important resources in an use case (e.g. 5G
antenna, IoT device etc.)

 hasBYONName This data property expresses as a string the name of the BYON to
be used in a cloud application deployment.

 hasBYONStatus This Boolean property indicates whether or not a certain BYON is
active, connected and ready to host cloud application
components.

D1.3 Final Data, Cloud Application & Resource Modelling

Page 31

 Class Taxonomy
Levels

Properties Description

 hasCPU This object property associates BYON class with the CPU class
(i.e., range) in order to extend the properties of the Central
Processing Units (CPUs) that BYON is equipped with (e.g.,
hasNumberofCores).

 hasGPU This object property associates BYON class with the GPU class
(i.e., range) to refer to properties of the graphics processing units
(GPUs) that BYON can bring in a hosting topology (e.g.,
hasNumberofCores, hasGPUtype)

 hasMemory This object property associates BYON class with the Memory
class (i.e., range) in order to use the properties of this class to
express the memory capacity of the BYON at hand.

 hasStorage This object property associates BYON class with the Storage
class (i.e., range) in order to use the properties of this class to
express the persistence capacity of the BYON at hand.

The third change involved the introduction of additional properties required under the Accelerator class to address all
the modelling requirements of the MORPHEMIC pilots. Therefore, in the table below we present the new properties
added for FPGA and GPU classes.

Table 9 MDS Updates (Accelerator-related)

 Class Taxonomy
Levels

Properties Description

IaaS/Processing/Accelerat
or

 This class refers to application specific hardware designed or
programmed to compute operations faster than a general-purpose
computer processor.

IaaS/Processing/
Accelerator/GPU

 This class refers to IaaS resources that use graphics
processing units (GPUs), i.e. specialized electronic circuits
initially designed to rapidly manipulate and alter memory to
accelerate the creation of images in a frame buffer.

 hasGPUNumber This data property indicates an integer that reveals the number of
GPUs that are required in a specific use case.

IaaS/Processing/
Accelerator/FPGA

 This class refers to IaaS resources that use field programmable
gate arrays (FPGAs), as integrated circuits made to be configured
by the user after manufacturing.

 hasFPGANumber This data property indicates an integer that reveals the number of
FPGAs that are required in a specific use case.

The fourth change involved the introduction of an additional class used to annotate certain configuration related
metrics in a CAMEL metric type model, which convey for example the nodes’ busy statuses (i.e., working or idle). In
the same context small additions were made in other parts of the IaaS class. Therefore, in the table below we present
the new classes.

D1.3 Final Data, Cloud Application & Resource Modelling

Page 32

Table 10 MDS Metrics-related Updates

Class Taxonomy Levels Properties Description

Application placement
model / UtilityNotions

 This class is used for accommodating properties that express
configuration related metrics that are useful for the appropriate
application deployment management.

 BusyInstanceMetric This boolean property is used to annotate the Metrics in CAMEL
metric type model, which are responsible for conveying the busy
status of the application nodes.

 Cardinality This boolean property is used to define the number of resources
used for certain application or application component

 Unmovable This boolean property is used to define a constraint on certain
application component or in its hosting resource on whether or
not is allowed to be moved during a reconfiguration.

 IaaS/Processing/Memory
/ProcessingMemory/RA
M/hasUsedMemoryPerce
ntage

This property associates the RAM class with a value expressed in
percentage that denotes the amount of used memory in the
virtualised resource.

 IaaS/Processing/Memory
/ProcessingMemory/
RAM/hasFreeMemoryPe
rcentage

This property associates the RAM class with a value expressed in
percentage that denotes the amount of unused memory currently
available by the virtualised resource.

ContextAwareSecurityMode
l/SecurityContextElement/O

bject/SoftwareArtefact

softwareCategory String property describing the variant or the hardware of the
application component.

 derivedCategory This string property is similar to the softwareCategory; however,
the derivedCategory is inserted by MORPHEMIC profiling
process.

 language String property representing the main programming language of
the application component

 repositoryLocation It indicates the link/URL from where the application component
code can be downloaded

 softwareDescription String property providing general information on the application
component.

4.2 Implementation
The MDS was developed and extended in iterations, starting with an analysis of the available vocabularies and
ontologies related to data-aware multi-Cloud computing [24] and continued with an investigation of the advanced
requirements of the MORPHEMIC use cases [4]. For the representation of a comprehensible overview of MDS, we
used a free, HTML5-compliant mind mapping webapp14 with Cloud support. The detailed mind map produced for the
MDS can be used for an easier walkthrough of the Schema’s main aspects and extensions and can be found here15.
MDS was also serialized in XMI16. The serialization used was decided based on the fact that this vocabulary should be
properly specified in one Ecore-based language encoding form so as to enable the re-use of its elements for annotating

14 https://app.mindmapmaker.org/
15 https://www.morphemic.cloud/mds2022.png
16 http://www.omg.org/spec/XMI/

D1.3 Final Data, Cloud Application & Resource Modelling

Page 33

CAMEL models. We note that the reader may find the serialization of the complete model17. This serialization took
place by using the Metadata Schema editor which a graphical web-based tool that has been developed in the context of
the Melodic project, in order to enable the creation, modification and management of MDS. This editor has been
implemented in Java and is publicly available18.

5 Use-Case Modelling

In order to showcase the main extensions made to CAMEL and MDS, we will rely on an existing use-case of the
MORPHEMIC project. This use-case concerns the E-Brain Science, offered by CHUV. In this use-case, the focus is
on the image pre-processing pipeline which involves executing a workflow for pre-processing neuroimaging data.
The purpose of such a workflow is to convert neuroimaging data into the appropriate format, segment the formatted
data accordingly and extract the main brain features.

In order to support the execution of the pre-processing workflows, CHUV relies on the Proactive Workflow
Scheduler, a workflow engine able to deploy and execute workflows. As such, the architecture of the use-case follows
the master-slave pattern where the master is the scheduler and the workers are components which realise the
functionality of the workflow tasks. To enable flexibility in task realisation, CHUV has decided to realise one generic
slave component, which is able to fulfil the functionality of all needed tasks. This component originally had a
container-based form and was exploiting only the CPU of the respective underlying machine. However, through the
cooperation of CHUV and InAccel, a new component form was created, relying on the existence of FPGA-based
underlying resources. As such, the whole, container-based application of CHUV is polymorphic, thanks to this
development, which enabled to have two forms of the same application component, the slave one.

The master component, the ProActive Scheduler one, has a VM-based form, it is deployed via script-based
configuration and has the following requirements:

• An ubuntu v18 image should be utilised for the component deployment
• There should be two to 4 cores available in the underlying VM
• There should be 8100 to 10072 MB of main memory in the underlying VM
• The VM should be situated in a public Cloud
• There should be always one instance of this component which should never be migrated from one VM to

another one (e.g., due to application reconfiguration reasons)

The slave component, as indicated previously, has two forms, one simple, container-based and another both container-
and FPGA-based. Irrespectively of the form, the following requirements apply to this component:

• It should be deployed on a public Cloud

• It can be horizontally scaled from 1 to 10 instances at most

Further, there exist requirements which are specific to a certain form. For the simple, container-based form, the
following requirements apply:

• An ubuntu v18 image should be utilised for the component deployment, same as the one for the Pro-Active
Scheduler/master component

• The same resource requirements as for the master component also apply to this form of the slave component
(number of cores between 2 and 4 and main memory size between 8100 and 10072 MB)

On the other hand, the following requirements apply to the container- and FPGA-based form of the slave component:

• A different ubuntu v18 image should be used for the component form’s deployment

• There should be exactly 8 cores available to the container

• There should be 124928 MB of main memory available to the container

17 https://gitlab.ow2.org/melodic/camel/-/tree/morphemic-rc2.0/metadata-schema/current
18 https://bitbucket.7bulls.eu/projects/MEL/repos/metadata-schema/browse/muse

D1.3 Final Data, Cloud Application & Resource Modelling

Page 34

• There should be one FPGA available in the underlying VM

Thanks to the new version of CAMEL, it is not only possible to specify component-based requirements that apply to
all component configuration forms but also specific requirements that apply to a certain component form. The
respective deployment sub-model of the CAMEL model of this CHUV use-case is depicted in the following figure.

Figure 10 The deployment model of the CHUV use-case

Please notice that apart from this new CAMEL feature, CAMEL’s extension to apply inequality constraints on
resource/platform attributes annotated by MDS has been also applied. Further, for this application, some MDS
properties have been consolidated to have a singular form instead of max and min-based forms. For example, in the
case of the CPU-based resource requirements for the master component, we have the definition of a single attribute,
coresScheduler, which has now a range of values that restrain it while it is semantically annotated with the
hasNumberOfCores property of the CPU concept in the MDS. Thus, instead of having to define two attributes in the
resource requirement mapping to the MDS properties hasMinNumberofCores and hasMaxNumberofCores, we define
just one. This leads also to a smaller CAMEL model content and thus reduces the modelling effort required.
Mathematically, we have that now we can specify: 2 <= hasNumberOfCores <= 4 while previously we had to define:
hasMinNumberofCores = 2 and hasMaxNumberofCores = 4. This CAMEL & MDS extension along with all the
application requirements are shown in the following figure, depicting the respective requirement sub-model of the
CAMEL model of the CHUV use-case.

D1.3 Final Data, Cloud Application & Resource Modelling

Page 35

Figure 11 The requirement model of the CHUV use-case

Apart from resource, image and horizontal scale requirements, this CHUV application has two SLOs and one
optimisation requirement. The first SLO indicates that there should be no pending tasks to execute. Thus, if such tasks
exist, then we should reconfigure the application in order to have the computing ability to rapidly execute them. The
second SLO indicates that the average running tasks’ estimated finish time should be less or equal to 10 seconds.
Otherwise, the application would need to be reconfigured to provide additional resources to the slave component
instances in order to speed up the execution of their tasks. Finally, the utility to be maximised is given by the
following formula:

1

1 + 𝑒%&'()*+,-./	∗	23$45
()6.783/	9	:;/<3/=;/3+	∗	:;/<3/=>/?$@>4$,A

:;/<3/=;/3+	∗	:;/<3/=>/?$@>4$,A B9	C.DD3/)$73

where AvgPTEstDur is the estimated average duration of pending tasks, PTNumber is the number of pending tasks,
WorkerCores is the number of cores to be given for the slave component and WorkerCardinality is the number of
instances of the slave component to create and finally the BufferTime, related to the margin between the current
duration and the overall workflow deadline, is a composite metric calculated as follows: (Deadline - CurrentDur) *
0.5 where Deadline is the overall workflow deadline and CurrentDur is the current duration in the workflow
execution.

While the above SLOs and optimisation requirements could be already captured by CAMEL 2.0, a specific
measurement need applied requiring also the usage of the new CAMEL extension related to window pre-processing.

The respective CAMEL model part covering the aforementioned SLOs and optimisation requirements as well as all
the other CAMEL elements needed to specify them is depicted in the following figures. The last figure shows the
constraint model which is related to metric contexts defined in the metric sub-model as well as the SLOs as being
defined in the requirement model.

D1.3 Final Data, Cloud Application & Resource Modelling

Page 36

Figure 12 CHUV's metric model - PART I

D1.3 Final Data, Cloud Application & Resource Modelling

Page 37

Figure 13 CHUV's metric model - PART II

D1.3 Final Data, Cloud Application & Resource Modelling

Page 38

Figure 14 CHUV's metric model - PART III

D1.3 Final Data, Cloud Application & Resource Modelling

Page 39

Figure 15 CHUV's metric model - PART IV

Figure 16 The constraint model of the CHUV use-case

6 Conclusions & Future Work

This deliverable explained how CAMEL has evolved towards its new version 3.0. It indicated which changes and
additions were conducted on CAMEL in order to support polymorphic application modelling & adaptation as well as
other features of the MORPHEMIC platform. One of the most important change requirements that was accommodated
is backwards compatibility. In this sense, any CAMEL model conforming to its previous version (2.0) also conforms
to CAMEL 3.0. In this way, any use-case/commercial partner can easily migrate his/her models to this new CAMEL
version by just adding new elements in them such that his/her applications become polymorphic and can thus be
properly managed by the MORPHEMIC platform. Another interesting extension of CAMEL related to window-
preprocessing, a capability to group, filter and potentially sort measurements on the fly before they are processed in
terms of some statistical function (so as to compute measurements for a respective composite metric). In this way,
now CAMEL supports even more advanced scenarios for (multi-)Cloud application monitoring.

The deliverable also shed light to changes and updates made to MDS, the metadata schema of the MORPHEMIC
platform. Such changes related to CAMEL extensions (as MDS plays complementary role to CAMEL), to supporting
platform features as well as the MORPHEMIC use-cases. One important new extension (with respect to the ones
reported in MORPHEMIC D1.1 Data, Cloud Application & Resource Modelling [1]) related the coverage of features
of BYON nodes which enables to utilise such resources in cloud application provisioning by the MORPHEMIC
platform. In particular, resource requirements can now be posed in CAMEL models which can enable to filter the
available BYON nodes and select the one that best fits the current Cloud application and its requirements.

D1.3 Final Data, Cloud Application & Resource Modelling

Page 40

As we march towards the end of the MORPHEMIC project, it is not expected that new changes will be performed on
CAMEL and MDS as both artefacts have been already revised in accordance to the MORPHEMIC platform features
and their scheduling. However, we foresee that it is now the time to work on the exploitability of these artefacts in
terms of organisations that might desire to exploit the MORPHEMIC platform. In this respect, in the last period of the
project, there is a plan to work on CAMEL templates for different types of applications. Such templates could provide
assistance to a great variety of use-cases by supplying to them template-based CAMEL models and sub-models which
convey already sufficient information and require few additions and changes in order to accommodate the actual
content and requirements of the real application at hand. For instance, the deployment architecture for workflow-based
applications could be supplied and thus the owners of these applications could just modify the configuration of the
application components to guarantee their proper deployment according to this tailor-made architecture. This
templating work is undergoing and is expected to be reported in the last deliverable of WP1, D1.4 Final Component
Specification Collection & Enrichment Mechanisms. Further, the CAMEL Designer will be extended in order to
enable the specification of CAMEL models that comply to the new versions of CAMEL and MDS. This will be
covered in deliverable D5.2 User Interface Guidelines.

D1.3 Final Data, Cloud Application & Resource Modelling

Page 41

7 References

[1] Kais Chaabouni et al., “D1.1 Data, Cloud Application & Resource Modelling,” MORPHEMIC Project
Deliverable, Dec. 2020.

[2] A. P. Achilleos et al., “The cloud application modelling and execution language,” J Cloud Comp, vol. 8, no. 1, p.
20, Dec. 2019, doi: 10.1186/s13677-019-0138-7.

[3] Gordon Blair, Nelly Bencomo, and Robert B. France, “Models@run.time,” Computer, vol. 42, no. 10, pp. 22–
27, 2009, doi: 10.1109/MC.2009.326.

[4] B. Rochwerger et al., “The reservoir model and architecture for open federated cloud computing,” IBM Journal
of Research and Development, vol. 53, no. 4, pp. 535–545, Jul. 2009, doi: 10.1147/JRD.2009.5429058.

[5] A. J. Ferrer et al., “OPTIMIS: A holistic approach to cloud service provisioning,” Future Generation Comp.
Syst., vol. 28, no. 1, pp. 66–77, 2012, doi: 10.1016/j.future.2011.05.022.

[6] X. Etchevers, T. Coupaye, F. Boyer, and N. de Palma, “Self-Configuration of Distributed Applications in the
Cloud,” in 2011 IEEE 4th International Conference on Cloud Computing, Washington, DC, USA, Jul. 2011, pp.
668–675. doi: 10.1109/CLOUD.2011.65.

[7] D. K. Nguyen, F. Lelli, M. P. Papazoglou, and W.-J. van den Heuvel, “Blueprinting Approach in Support of
Cloud Computing,” Future Internet, vol. 4, no. 1, pp. 322–346, Mar. 2012, doi: 10.3390/fi4010322.

[8] Tobias Binz, Uwe Breitenbücher, Oliver Kopp, and Frank Leymann, “TOSCA: Portable Automated Deployment
and Management of Cloud Applications,” in Advanced Web Services, Athman Bouguettaya, Quan Z. Sheng, and
Florian Daniel, Eds. Springer, New York, NY, 2014, pp. 527–549. doi: 10.1007/978-1-4614-7535-4_22.

[9] G. C. Silva, L. M. Rose, and R. Calinescu, “Cloud DSL: A language for supporting cloud portability by
describing cloud entities,” CEUR Workshop Proceedings, vol. 1242, pp. 36–45, 2014.

[10] V. Andrikopoulos, A. Reuter, S. Gómez Sáez, and F. Leymann, “A GENTL Approach for Cloud Application
Topologies,” in Advanced Information Systems Engineering, vol. 7908, C. Salinesi, M. C. Norrie, and Ó. Pastor,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014, pp. 148–159. doi: 10.1007/978-3-662-44879-3_11.

[11] D. Ardagna et al., “MODACLOUDS, A Model-Driven Approach for the Design and Execution of Applications
on Multiple Clouds,” in ICSE MiSE: International Workshop on Modelling in Software Engineering, 2012, pp.
50–56.

[12] A. Bergmayr, U. Breitenbücher, O. Kopp, M. Wimmer, G. Kappel, and F. Leymann, “From Architecture
Modeling to Application Provisioning for the Cloud by Combining UML and TOSCA:,” in Proceedings of the
6th International Conference on Cloud Computing and Services Science, Rome, Italy, 2016, pp. 97–108. doi:
10.5220/0005806900970108.

[13] F. Chauvel et al., “Definition of the ARCADIA context model,” Arcadia project deliverable D2.2, Jul. 2015.

[14] M. Hamdaqa and L. Tahvildari, “Stratus ML: A Layered Cloud Modeling Framework,” in 2015 IEEE
International Conference on Cloud Engineering, Tempe, AZ, USA, Mar. 2015, pp. 96–105. doi:
10.1109/IC2E.2015.42.

[15] K. Wild, U. Breitenbucher, L. Harzenetter, F. Leymann, D. Vietz, and M. Zimmermann, “TOSCA4QC: Two
Modeling Styles for TOSCA to Automate the Deployment and Orchestration of Quantum Applications,” in 2020
IEEE 24th International Enterprise Distributed Object Computing Conference (EDOC), Eindhoven,
Netherlands, Oct. 2020, pp. 125–134. doi: 10.1109/EDOC49727.2020.00024.

[16] C. K. Dehury, P. Jakovits, S. N. Srirama, G. Giotis, and G. Garg, “TOSCAdata: Modeling data pipeline
applications in TOSCA,” Journal of Systems and Software, vol. 186, p. 111164, Apr. 2022, doi:
10.1016/j.jss.2021.111164.

[17] K. Kritikos et al., “Multi-cloud provisioning of business processes,” J Cloud Comp, vol. 8, no. 1, p. 18, Dec.
2019, doi: 10.1186/s13677-019-0143-x.

D1.3 Final Data, Cloud Application & Resource Modelling

Page 42

[18] K. Kritikos and P. Skrzypek, “Are Cloud Modelling Languages Ready for Multi-Cloud?,” in Proceedings of the
12th IEEE/ACM International Conference on Utility and Cloud Computing Companion - UCC ’19 Companion,
Auckland, New Zealand, 2019, pp. 51–58. doi: 10.1145/3368235.3368840.

[19] Geir Horn et al., “D2.3 Proactive utility: Framework and approach,” MORPHEMIC Project Deliverable, Jun.
2021.

[20] Ciro Formisano, Robert Gdowski, Adeliya Latypova, Ferath Kherif, and Sebastian Geller, “D6.1 Industrial
requirements analysis,” Morphemic Project Deliverable, 2020.

[21] Ferath Kherif, Robert Gdowski, Sebastian Geller, Ciro Formisano, and Adeliya Latypova, “D6.3 Use cases
definition and preparation,” MORPHEMIC Project Deliverable, Dec. 2020.

[22] W. M. P. van der Aalst, A. H. M. ter Hofstede, B. Kiepuszewski, and A. P. Barros, “Workflow Patterns,”
Distributed and Parallel Databases, vol. 14, no. 1, pp. 5–51, 2003, doi: 10.1023/A:1022883727209.

[23] Geir Horn and Paweł Skrzypek, “MELODIC: Utility Based Cross Cloud Deployment Optimisation,” in
Proceedings of the 32nd International Conference on Advanced Information Networking and Applications
Workshops (WAINA), Conference Location: Krakow, Poland, May 2018, pp. 360–367. doi:
10.1109/WAINA.2018.00112.

[24] Yiannis Verginadis, Ioannis Patiniotakis, Christos Chalaris, Gregoris Mentzas, Kyriakos Kritikos, and Keith
Jeffery, “D2.4 Metadata schema,” Melodic Project Deliverable, Nov. 2017.

