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1 Introduction  

1.1 Scope 
This deliverable focuses on the description of a holistic monitoring system, that aims to provide insights on the operation 
and health status of multi-cloud applications to allow the MORPHEMIC platform to initiate timely application 
reconfiguration. We discuss how the MORPHEMIC monitoring system introduces self-healing capabilities, which 
means it is able to cope with monitoring nodes failures or other network related issues like intermittent connectivity in 
order to monitor the deployed cloud application constantly and effectively. Furthermore, we describe the design and 
implementation of the MORPHEMIC forecasting module, which comprises several implemented time-series forecasting 
methods for constituting the platform able to proactively respond to the deployed cloud application needs.  

The aim of this document is to report on the WP2 work with respect to the implementation and integration of a federated 
event processing management system with self-healing capabilities with a forecasting module that will realise the 
proactive adaptation capabilities of the MORPHEMIC platform. Therefore, we present and discuss the details of the 
approach for monitoring applications as well as analyse the architecture of components involved in the monitoring and 
prediction processes. We further provide the relevant process flow of the components which are involved in the 
acquisition of both real-time and predicted metrics related to the QoS specification of the application. 

  

1.2 Document structure and Intended Audience 
The document continues with an introductory section on the MORPHEMIC proactive adaptation approach. In section 
2, we describe the overall components architecture and describe the flow for all the involved technological parts of the 
MORPHEMIC platform that focus on proactive adaptation support. This kind of support refers to the means for deciding 
on application component adaptations based on anticipated or predicted imminent Service Level Objectives (SLOs) 
violation. This kind of proactiveness will lead to multi-cloud application deployment optimization. The MORPHEMIC 
components involved undertaking: i) the aggregation, processing, and storage of monitoring information; ii) the datasets 
preparation for training forecasting algorithms; iii) the design of different forecasters that can be used for time-series 
prediction according to monitoring data characteristics; and last iv) the components involved in triggering a 
reconfiguration cycle proactively. Section 3 continues with detailed aspects on the design and implementation of 
MORPHEMIC’s Event Management System (EMS), focusing on its self-healing capabilities that allow this distributed 
framework to recover from potential failures or network issues with the less possible disruption into the monitoring 
effort. In Section 4, we discuss the Persistent Storage as means for storing monitoring time-series and preparing the 
datasets that will be used for training the forecasters used by the platform. In Section 5, we describe the details of eight 
different forecasters that are used in MORPHEMIC for finding the best possible predictions on different monitoring 
metrics and imminent SLOs violations. Furthermore, in the same section we present an illustrative use of each of these 
forecasters based on the same dataset and discuss some initial comparative findings. In Section 6, we focus on the 
exploitation of the forecasted data for orchestrating the platform’s predictions and triggering the adaptation proactively 
when needed. This involves implementation aspects of the Prediction Orchestrator component and the Severity-based 
SLO Violation Detector. Next, in Section 7, we discuss the extensions made to the Metasolver to be able to exploit the 
predictions provided and decide on the initiation of a reconfiguration cycle, either reactively or proactively, based on 
the available data. Last, Section 8 concludes this report and discusses the next steps in terms of the WP2 work. 

All the sections of this deliverable should be read by all research and pilot partners to understand the current approaches 
and implementation work regarding the platform’s monitoring system and its QoS prediction capabilities. Furthermore, 
this deliverable includes valuable insights and progress beyond the state-of-the-art that can be interesting to any cloud 
computing researcher.  
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2 Proactive Adaptation Approach  

2.1 Overall components architecture and flow description 
In terms of WP2 work, we introduce new components in the MORPHEMIC architecture to support the important 
proactive adaptation capability. This capability (as it was analysed in D2.3) refers to interrelated functionalities that 
involve the advanced exploitation of application and infrastructure monitoring data to train prominent forecasting 
algorithms that are able to provide time-series based predictions on critical (composite) metrics. These predictions are 
evaluated in real-time by our system, according to their dimensions like probability and confidence interval and analysed 
with respect to their potential impact on the defined Service Level Objectives (SLOs) of the cloud applications managed 
by our platform. These capabilities are introduced by the MORPHEMIC Forecasting module, which is analysed in the 
sections. A significant impact on one or more defined SLOs reveal the need to proactively start a new reconfiguration 
cycle that will create the necessary time space for our platform to find a new optimized configuration that will effectively 
cope with the predicted imminent quality of service (QoS) degradation due to expected workload fluctuation, 
application, network, or other infrastructure issues. 

Therefore, we use as an input the monitoring data provided by the enhanced federated Event Management System (EMS) 
to aggregate the necessary historical records in order to calculate predictions for specific time horizons into the future. 
Specifically, the process flow followed along with the involved components are explained below (see also Figure 1): 

i. Gather, process and propagate monitoring data (EMS); 
ii. Persist monitoring data as time-series and provide the capability to automatically construct datasets appropriate 

for any forecasting method that should be used (Persistent Storage sub-component); 
iii. Define which subset of monitoring metrics (based on the CAMEL application model) should be considered by 

the forecasting modules for deriving predictions (Translator);  
iv. Use different prominent forecasting methods in parallel to provide predictions for the required metrics for a 

specific time horizon into the future, i.e., several components that implement different forecasting algorithms 
(TFT [4], ES-Hybrid [7], N-Beats [10], etc.); 

v. Orchestrate the invocation of different forecasters in parallel per metric, aggregate predictions once ready, stop 
forecasters once poor results per metric are detected, filter out best predictions and/or ensemble predictions 
(Prediction Orchestrator); 

vi. Analyse the aggregated predictions available and derive the severity of the potential SLO violation expected in 
case the perceived predictions will be confirmed (Severity-based SLO Violation Detector). 

All the involved components are analysing in the remaining sections of this deliverable.  

 
Figure 1 - Proactive adaptation architecture & flow 
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3 Holistic Application Monitoring System  

Event Management System (EMS) is the distributed application monitoring system, used by the MELODIC and 
MORPHEMIC Upperware, for monitoring the operation of distributed, cross-cloud applications it deploys. EMS has 
the responsibility of deploying a network of agents for collecting the required monitoring information (from monitoring 
probes) as events, process them using complex event processing techniques, and forward the results to Upperware. The 
application’s CAMEL model specifies the needed monitoring information and the kind of processing required. 

EMS comprises of a server integrated in the Upperware, named Event Processing Manager (EPM), and several clients 
named Event Processing Agents (EPAs). EPAs are typically installed at application VMs and collocated with application 
components. EPM and EPAs formulate a network of nodes for distributed event processing, called Event Processing 
Network (EPN). This network is orchestrated and controlled by EPM. More information about EMS components and 
their roles can be found in deliverable D2.1 [1]. 

After the D2.1 submission we continued working toward improving the implementation and adding functionalities. 
Specifically, the following new EMS features have been implemented: 

• Extension of EMS self-healing capabilities with the addition of facilities for recovering EPAs; 
• Addition of EMS Administration web user interface. 

 

3.1 EMS with Self-healing Capabilities 
Self-Healing is the ability of a system to recover or repair itself without human intervention. Regarding EMS, self-
healing refers to recovering or replacing monitoring system components that fail, like EPM or EPAs. To this end, the 
centrally-controlled EMS monitoring network of MELODIC [1] is gradually being replaced by a network of 
autonomously acting EMS components. Naturally, EPM will retain the responsibility of coordinating EPAs and 
formulating the monitoring network, but self-healing activities will be carried out by EPAs themselves or with the 
assistance of their nearby network nodes. For instance, an EPA might autonomously decide to restart itself in order to 
recover from an exceptional situation or restart an unresponsive a nearby EPA. 

The steps required to complete the shift to the new paradigm of EMS monitoring network are outlined in the following 
Table 1. 

Table 1 - EMS Self-Healing activities 

Activities 

Federated EMS – Local clustering of EPAs 

Aggregator Selection 

EPA recovery 

Edge node proxy recovery 

EPM recovery and/or redundancy 

Federated EMS refers to the extension of EMS for partitioning EPAs into groups of nearby agents. Nearby EPAs, with 
the assistance of EPM, formulate clusters of peer nodes called local clusters. Each EPA is at the same time a cluster 
node and participates in a number of cluster-related operations, like checking the availability of other cluster nodes. 

Aggregator builds on the notion of local cluster and introduces the role of leader node (called Aggregator), which is 
responsible for coordinating or carrying out self-healing actions in its local cluster. Aggregator Selection refers to the 
process of selecting one of the local cluster nodes to become leader (Aggregator). This process occurs automatically 
when a new local cluster is created or when current Aggregator fails or becomes unavailable. 



D2.2 Implementation of a holistic application monitoring system with QoS prediction 
capabilities 

 

Page 10 

 

   

 

The functionalities related to Federated EMS / Local clustering and Aggregator selection have already been implemented 
and are reported in detail in deliverable D2.1[1]. The EPA recovery functionalities have been added and are described 
in more detail in the following sections. Eventually the EPM recovery and/or redundancy, and Edge node proxy recovery 
will be implemented in the next period and reported in deliverable D2.4. Additionally, an extension of the Aggregator 
selection is also investigated in order to enable the replacement of an Aggregator based on current nodes load or other 
criteria beyond Aggregator failure. The latest version of EMS is available on the project’s GitLab repository1. 

3.1.1 EPA recovery 

EPAs are typically installed in the VMs of a deployed, multi-cloud application; thus, they are collocated with the 
application components running in the VMs. EPA software is a standard JavaTM application, which is installed when 
application VM is created. If for any reason EPA malfunctions or crashes it is usually enough to kill the running instance 
and start a new one for recovering. The new EPA instance will read the configuration and attempt to connect to EPM 
for receiving configuration pertaining to application monitoring as well as local clustering. In MELODIC this action 
was carried out manually. In the context of Morphemic, this task is part of EMS self-healing capabilities and is called 
EPA recovery. 

We have designed and implemented two strategies for recovering of crashed or malfunctioning EPAs. Despite their 
goals are identical (i.e., the recovery of EPAs), the two strategies follow different approaches with regard to who is 
responsible for conducting the recovery actions. The former relies on the EPM for monitoring EPAs availability, while 
the latter one relies on local clusters’ Aggregators for monitoring EPAs’ availability. While both approaches are fast to 
detect an EPA loss, there are certain situations where the latter is more resilient to network disruptions and latency, since 
Aggregators live close to the EPAs of the same local clusters. Both recovery strategies have been implemented as EMS 
plugins and both take advantage of the new internal event bus framework, introduced in EPM and EPA architectures. 

In order to make self-healing features more self-contained and independent from EMS core, we have introduced two 
new frameworks for developing EMS plugins. The former is for creating EPM plugins while the latter for EPA plugins. 
In fact, they can be used for developing EMS plugins for any use beyond self-healing. Such an example is the Netdata 
Collector plugin, which is already included in EPAs for retrieving monitoring data from the configured Netdata2 agents. 

EMS plugins must implement the Plugin interface, which defines the plugin start/stop methods, and also use the EMS 
Util library and specifically the newly added EMS internal event bus (part of Util library). Typically, EMS plugins 
should be activated and configured in the standard EMS configuration, although a few exceptions exist (namely the 
NetdataCollector plugin at EPAs). They can subscribe to certain internal event topics in order to get notified when 
certain events of interest occur (like connection/disconnection of an EPA to the EPM). Plugins can also use the facilities 
of the core EMS modules for fulfilling their goals; for instance, send monitoring events and connecting to EPA VMs. 

The Plugin interface is defined as shown in the next UML class diagram: 

 
Figure 2 - UML class diagram of EMS Plugin interface 

 

The start() method of all activated plugins is invoked during EPM or EPA boot time, after the core modules get 
initialized and before the normal execution starts. The stop() method is respectively invoked before EPM or EPA 
terminates and before the core modules are signalled to shut down. 

 

1 EMS in the MORPHEMIC GitLab repository: https://gitlab.ow2.org/melodic/melodic-upperware/-/tree/morphemic-rc2.0/event-management  
2 https://www.netdata.cloud/ 
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The internal event bus extends the EMS core with the ability to exchange internal messages, in the form of events, 
among EMS modules, without requiring explicit references between them. EMS modules will publish certain events at 
specific points in their life-cycle or when certain actions are taken. Moreover, the Baguette Server (a core module of 
EPM) will publish events related to EPAs, for instance when an EPA connects or disconnects. Apart from the core 
modules, EMS plugins can also use the internal event bus in order to publish or receive events from core modules or 
other plugins. The EPA recovery, self-healing plugins are particularly interested in the EPA connection/disconnection 
events, in order to schedule and trigger the recovery actions. 

The EMS internal event bus is a lightweight bus implementation included in EMS Util package. It supports multiple 
topics and can convey events of any type (as long as they are Java objects). Each EPA, as well as the EPM, encompasses 
its own instance of internal event bus. the formal specification of internal event bus object is given in the following 
UML class diagram. 

 
Figure 3 - UML class diagram of Internal Event Bus 

Internal event bus must not be confused with the ActiveMQ event broker of EMS Broker-CEP module, which is used 
for transporting the MORPHEMIC metric and prediction events from EPAs to EPM. 

  

3.1.2  EPM-based EPA recovery 

The EPM-based strategy for EPA recovery has been implemented as a new EPM plugin (ClientRecoveryPlugin class) 
and included in the EPM codebase. As mentioned before, EPM has been extended with an internal event bus where each 
core modules and plugins can publish events at certain topics. Plugins can subscribe to the necessary event topics and 
get notified. Based on this event bus design, the EPM-based EPA recovery plugin, receives events that signal an EPA 
disconnection. If this is not an expected action (i.e., EPA is scheduled for removal), the plugin will mark client as 
“probably lost/dead” and wait for a preconfigured period of time. If during that period EPA reconnects to EPM, a new 
EPA connection event is sent in the internal event bus, and the EPA recovery plugin will clear the “possibly lost/dead” 
mark. If the period expires then the marked EPA is considered lost/dead, and the plugin starts executing a configured 
EPA recovery plan. Specifically, it connects (using SSH) to the VM where the lost/dead EPA has been installed, carries 
out the tasks of the recovery plan, and disconnects. It subsequently marks the “recovered” EPA as “probably lost/dead” 
again and starts a new grace period during which the recovered EPA should boot and connect to EPM. The plugin will 
retry for a preconfigured number of times to recover EPA before it gives up. In this first version of ClientRecoveryPlugin 
self-healing plugin, we have configured a simple recovery plan that targets to Linux-based VMs and involves killing 
any existing instance of EPA and launching a new one. It is important to mention that the grace period must provide 
enough time to EPA to launch and connect to EPM. 

3.1.3  Aggregator-based EPA recovery 

The Aggregator-based EPA recovery strategy is similar to the EPM-based one but in this case the local cluster 
Aggregators are responsible for EPA recovery, instead of EPM. This strategy has been implemented as an EPA plugin 
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(SelfHealingPlugin class) and included in EPA codebase. Like EPM, EPAs have also been extended with an internal 
event bus. The plugin subscribes for events reporting removal of local cluster nodes (i.e., nearby EPAs). There are a few 
differences, however. First, the plugin is activated only when an EPA is the Aggregator of the local cluster, otherwise it 
stays idle (ignoring any incoming events). Second, the Aggregator detects and recovers only the EPAs living in the same 
local cluster. Eventually, the detection of disconnected EPAs is based on the facilities provided by the clustering library 
(currently Atomix3). The reason for using the clustering facilities is that there are no SSH control connections to 
Aggregator as it is the case with EPM. Therefore, the approach used for detecting lost/dead EPAs is based on detecting 
the removal of cluster nodes (which implies a VM loss or a network disruption). The clustering library uses the SWIM 
protocol [2] for detecting lost cluster nodes. 

Aggregator-based EPA recovery is the default strategy for recovering EPAs. 

3.1.4 Partitionable approach4 

As it has been detailed in deliverable D2.1 (section 4.2.3 [1]) EPAs installed at nearby nodes are grouped together and 
formulate clusters (called local clusters), in order to quickly detect node failures in the cluster that can lead to monitoring 
capacity degradations (or interruptions), and they take certain recovery actions aiming at compensating the problem. 
For the creation of the local clusters, EPAs use the Atomix framework. They can be configured to use either the Raft or 
the Primary-Backup replication protocol, offered by Atomix. Moreover, it is possible to configure the number of 
partition groups used in the cluster (in EPAs’ configuration files). Partition groups are sets of cluster nodes using a 
certain replication protocol for replicating the shared data. The default configuration of EPAs specifies one partition 
group using Raft for cluster management data, and one partition group using Primary-Backup for user data. 

A focal concept in the EMS monitoring topology is that of Aggregators, which are EPAs with the extra responsibility 
of (a) collecting and processing monitoring information from their nearby EPAs (thus providing distributed processing 
of the monitoring data), and (b) carrying out the corrective actions when a cluster node fails (thus offering self-healing 
to the local cluster). The EPAs in a local cluster are configured (through a distributed selection protocol) to send their 
monitoring data to the cluster Aggregator.  

However, when the Aggregator fails (i.e., becomes inaccessible) the EPAs of the cluster will quickly detect that fact, 
and select another node to become Aggregator. In the case where the nodes of a local cluster are divided into two (or 
more) partitions, it will happen that one partition has an Aggregator node while the other(s) do not. The nodes of the 
Aggregator-less partition will detect that original Aggregator has “failed” and will automatically select a new node (of 
the partition) to become Aggregator. Therefore, cluster will end up with two working partitions (as if we had two local 
clusters from the beginning). 

In the case where partitions join again there will be one cluster (since all nodes will observe all other nodes), but in 
terms of monitoring there will be two Aggregators, and some nodes will push their monitoring data to one Aggregator, 
while other nodes to the other. In order to avoid this fragmentation, we plan to add a “guarding” feature in EPAs that 
will check for the existence of more than one Aggregator in the cluster and start Aggregator selection process in such 
case. Alternatively, the guarding feature can ask one of the Aggregators to retire, or one of the Aggregators can retire 
by itself, as soon as it finds out there is another Aggregator in the cluster with a better selection score. The remaining 
Aggregator will re-send configuration instructions to all cluster nodes to push their monitoring data to it. 

EPAs’ ability to select an Aggregator within a partition ensures full functionality in terms of monitoring. We believe 
the combination of this capability (i.e., having a functional partition) and the addition of the “guarding” feature that will 
prevent cluster fragmentation (in terms of monitoring), in the case of partition healing, will sufficiently address the 
consideration for a partitionable approach. 

3.1.5 Dynamic aggregator election and potential performance issues5 

In the current implementation of local clusters in EPAs, the Aggregator role is not movable, unless the node fails. In 
this case the Aggregator role will be assigned to another node in the cluster, picked based on a scoring function (that 

 
3 https://atomix.io/ 
4 This section also refers to the recommendation n.8 from the MORPHEMIC Intermediate Review Report. 
5 This section also refers to recommendation n.9 from the MORPHEMIC Intermediate Review Report. 
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will typically consider the node resources). Still, it is possible to manually move Aggregator to another node, but we 
consider this as a special Developers or Administrator feature, and hence out of the scope of MORPHEMIC for 
autonomic management of the monitoring infrastructure. 

In the future, we plan to introduce the possibility to move Aggregator role based on the load of the hosting node as well 
as the available resources of other nearby nodes. We will take care to prevent too frequent Aggregator moves, for 
instance by introducing a "cooling period" between moves, or by using strict criteria with regard to the node’s current 
load and available resources, for moving Aggregator. Another approach would be the EMS server to assume the 
Aggregator role for a cluster, when there is no node capable of becoming Aggregator, or they seem to fail quite 
frequently. Of course, this would be a last resort since it would render local clustering meaningless for those nodes. 

3.1.6 Issues by keeping monitoring data in memory6 

It is currently possible to adjust the amount of memory allocated by EPAs in two ways; (a) setting the amount of memory 
the embedded CEP engine will reserve (it can be a value in bytes or a percentage of JVM's heap; current default is 20% 
of JVM heap), and (b) specifying the system memory the JVM will allocate, at JVM launch command (currently JVM 
default is used).  

Apart from the previous approaches, we will extend the Broker-CEP module of EPAs to impose a limit in the number 
of events cached in-memory, while waiting to be sent to Aggregator or EMS server. Moreover, we can configure 
ActiveMQ (the embedded event broker of EPAs) to persist events in a database (KahaDB), instead of caching them in-
memory. Additionally, if use case scenarios demand it, we can design an event drop-off mechanism that will eliminate 
events based on certain criteria (like age), when event number grows beyond a specified limit. However, such a feature 
must be engaged and configured by the application designer who has knowledge of which events are important for the 
application monitoring (and hence cannot be dropped) and which can be safely ignored. 

 

3.2 EMS at the Edge  
A notable advancement of MORPHEMIC compared to its predecessor (Melodic) is its ability to deploy multi-cloud 
application components to a variety of target nodes (beyond VMs) that include Edge devices. For this reason, EMS 
needs to be adapted accordingly (work in progress to be reported in D2.4). Edge devices pose certain constraints in 
installing, configuring and running EPAs, due to limited resources but due to other reasons as well (e.g., specific 
networking requirements, non-standard ways of collecting monitoring data, or restraint environment with regard to 
which tools can be deployed). 

The approach chosen for including Edge nodes in EMS monitoring scheme, is to avoid installing EPAs on them. Instead, 
EPAs running on VMs close to the Edge will be assigned with the task of collecting, processing and propagating the 
monitoring data of Edge nodes. We need to distinguish between two categories of Edge devices: 

• those where it is possible to deploy and run a Netdata agent, and 
• those where it is not possible to deploy a Netdata agent. 

Netdata is a well-known tool for real-time monitoring of various (system and application) metrics. EPAs use Netdata as 
a monitoring probe for collecting the required metrics and further process and propagate them. 

The former category encompasses Edge devices where Netdata agent is preinstalled as well as devices where EPM can 
connect and install a Netdata agent. EPM requires an SSH connection to the target device and a Unix-style shell (like 
bash), for installing and launching Netdata agent. This category of Edge devices has already been tested with Raspberry 
Pi 3 units. 

The latter category includes devices where Netdata cannot be used. In this case only the provided means of monitoring 
data collection can be used. For this reason, it is required to develop device-specific data collection EPA plugins (like 
the Netdata Collector plugin bundled in EPA codebase).  

 
6 This section also refers to recommendation n.10 from the MORPHEMIC Intermediate Review Report. 



D2.2 Implementation of a holistic application monitoring system with QoS prediction 
capabilities 

 

Page 14 

 

   

 

EMS self-healing also needs to be able to handle failures related to the Edge devices. This involves reassigning the 
collection of the monitoring data of an Edge device to another EPA when the initial one fails or gets overloaded. 

 

3.3 Event Structure for Predictions  
In order to facilitate the communication between the components participating in the forecasting mechanism of 
Morphemic, a number of new event types have been introduced along with the corresponding event payloads. These 
new event types are specific to the forecasting mechanism and are used for signalling and coordination. The event 
payloads are represented in JSON. More information about forecasting mechanism is provided in Section 6. 

The following tables detail the payload fields for each event type. The first table details the payload of the metric event 
(as it has been defined in the context of MELODIC project and is used in MORPHEMIC too). The numbering used 
refers to the expected process flow presented in figure 1. 

Table 2 - Current Metrics & SLO Event fields 

[0] Current Metrics & SLO Event fields 

Topic [metric_name]  

metricValue Double Actual metric value 

level Integer The level of EPA where metric captured or computed 

timestamp Long Event creation date/time from epoch (Coordinated 
Universal Time - UTC is considered in all timestamps) 

refersTo String The id of the application or component or (VM) host for 
which the prediction refers to 

cloud String Cloud provider of the VM (with location) 

provider String Cloud provider name 
 

Next, we provide an example event: 
Listing 1 - Example Event [0] 

{ 
    "metricValue": 12.34, 
    "level": 1, 
    "timestamp": 143532341251, 
    "refersTo": "MySQL_12345", 
    "cloud": "AWS-Dublin", 
    "provider": "AWS" 
} 

 

 

Table 3 - Predicted Metrics Event fields 

[1] Predicted Metrics Event fields 

Topic prediction.[metric_name] 
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metricValue Double Predicted metric value 

level Integer Level of EPA where prediction occurred or refers 

timestamp Long Prediction creation date/time from epoch (Coordinated 
Universal Time - UTC is considered in all timestamps) 

probability Double Probability of the predicted metric value (range 
0..1) 

confidence_interval Double[2] The probability-confidence interval for the 
prediction 

predictionTime Long This refers to time point in the imminent future 
(that is relative to the time that is needed for 
reconfiguration) for which the predicted value is 
considered valid/accurate (in UNIX Epoch) 

refersTo String The id of the application or component or (VM) host 
for which the prediction refers to 

cloud String Cloud provider of the VM (with location) 

provider String Cloud provider name 

 

Next, we provide an example event: 
Listing 2 - Example Event [1] 

{ 
    "metricValue": 12.34, 
    "level": 1, 
    "timestamp": 143532341251, 
    "probability": 0.98, 
    "confidence_interval" : [8,15] 
    "predictionTime": 143532342, 
    "refersTo": "MySQL_12345", 
    "cloud": "AWS-Dublin", 
    "provider": "AWS" 
} 
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Table 4 – Monitored SLOs Event fields 

[2] Monitored SLOs Event 

Topic metric.metric_list 

name String A string identifier of the SLO. Each SLO can contain 
multiple sub-SLOs, in which case the event contains 
the ‘constraints’ field and does not contain the 
‘metric’ and ‘threshold’ fields 

operator String One of the “>”,”<”,”>=” or “<=” comparison operators 
(when the field is present in ‘simple’ Event 2 JSON 
objects) or one of the ‘AND’ or ‘OR’ logical 
operators. 

constraints JSON[] This field only exists when one or more sub-SLOs are 
defined for this SLO (i.e., in ‘complex’ Event 2 JSON 
objects). The value of this field is a JSON array 
consisting of ‘simple’ Event 2 JSON objects (without 
any sub-SLOs) 

metric String The name of the monitoring metric for which the SLO is 
defined (this field is only present in ‘simple’ Event 
2 JSON objects) 

threshold Double The numerical value which sets the acceptable 
threshold for this monitoring metric (this field is 
only present in ‘simple’ Event 2 JSON objects) 

Next, we provide an example event: 
Listing 3 - Example Event [2] 

{ 
  "name": "_", 
  "operator":"OR", 
  "constraints":[ 
    {"name":"cpu_and_memory_or_disk_too_high", 
      "operator":"AND", 
      "constraints": [ 
        { 
          "name":"cpu_usage_high", 
          "metric":"cpu_usage", 
          "operator":">", 
          "threshold":70.0 
        }, 
        { 
          "name": "memory_or_disk_usage_high", 
          "operator": "OR", 
          "constraints": [ 
            { 
              "name":"memory_usage_high", 
              "metric":"memory", 
              "operator":">", 
              "threshold":70.0 
            }, 
            { 
              "name": "disk_usage_high", 
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              "metric":"disk", 
              "operator":">", 
              "threshold":95.0 
            } 
          ] 
        } 
      ] 
    } 
  ] 
} 

 

Table 5 – Predicted SLOs Event fields 

[3] Predicted SLOs Event fields 

Topic prediction.slo_severity_value 

severity Double The severity value which is associated to a possible 
violation of an SLO 

probability Double Probability of reconfiguration being required (range 
0..1) 

predictionTime Long Refers to time point in the imminent future (that is 
relative to the time needed for reconfiguration) for 
which the severity value is calculated (since UNIX 
Epoch) 

 

Next, we provide an example event: 
Listing 4 - Example Event [3] 

{ 
    "severity": 0.9064, 
    "probability": 0.92246521, 
    "predictionTime": 1435323424 
} 

Table 6 – Translator–to–Forecasting Methods/Prediction Orchestrator Event fields 

[4] Translator–to–Forecasting Methods/Prediction Orchestrator Event fields 

Topic metrics_to_predict 

Array of:     

 metric String Name of the metric to predict 

  level Integer Level of EPA where this metric may be produced/found 

  publish_rate Long Expected rate for datapoints regarding the specific 
metric (according to CAMEL) 

Next, we provide an example event: 
Listing 5 - Example Event [4] 
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[{ 
    "metric": "MaxCPULoad", 
    "level": 3, 
    "publish_rate": 60000, 
}, 
{ 
    "metric": "MinCPULoad", 
    "level": 3, 
    "publish_rate": 50000, 
}] 

 
Table 7 – Forecasting Methods–to–Prediction Orchestrator Event fields 

[5] Forecasting Methods–to–Prediction Orchestrator Event fields 

Topic training_models 

metrics Strings[] Metrics for which a certain forecasting method has 
successfully trained or re-trained its model 

forecasting_method String The method that is currently re-training its models 

timestamp Long Date/time of model(s) (re-)training 

Next, we provide an example event: 
Listing 6 - Example Event [5] 

{ 
    "metrics": ["MaxCPULoad","MinCPULoad"], 
    "forecasting_method": "ESHybrid", 
    "timestamp": 143532341251, 
} 

Table 8 – Forecasting Methods–to–Prediction Orchestrator Event fields 

[6] Forecasting Methods–to–Prediction Orchestrator Event fields 

Topic intermediate_prediction.[forecasting_method].[metric_name] 

metricValue Double Predicted metric value (more than one such events 
will be produced for different time points into the 
future) 

Level Integer Level of EPA where prediction occurred or refers 

timestamp Long Prediction creation date/time from epoch 
(Coordinated Universal Time – UTC is considered in 
all timestamps) 

probability Double Probability of the predicted metric value (range 
0..1) 

confidence_interval Double[2] The probability-confidence interval for the 
prediction 
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predictionTime Long This refers to time point in the imminent future 
(that is relative to the time that is needed for 
reconfiguration) for which the predicted value is 
considered valid/accurate (in UNIX Epoch) 

refersTo String The id of the application or component or (VM) host 
for which the prediction refers to 

cloud String Cloud provider of the VM (with location) 

provider String Cloud provider name 

Next, we provide an example event: 
Listing 7 - Example Event [6] 

{ 
    "metricValue": 12.34, 
    "level": 3, 
    "timestamp": 143532341251, 
    "probability": 0.98, 
    "confidence_interval" : [8,15] 
    "predictionTime": 143532342, 
    "refersTo": "MySQL_12345", 
    "cloud": "AWS-Dublin", 
    "provider": "AWS" 
} 

 

Table 9 – Prediction Orchestrator–to–Severity-based SLO Violation Detector Event fields 

[7] Prediction Orchestrator–to–Severity-based SLO Violation Detector Event fields 

Topic prediction.[metric_name] 

metricValue Double Predicted metric value 

level Integer Level of EPA where prediction occurred or refers 

timestamp Long Prediction creation date/time from epoch 
(Coordinated Universal Time – UTC is considered in 
all timestamps) 

probability Double Probability of the predicted metric value (range 
0..1) 

confidence_interval Double[2] The probability-confidence interval for the 
prediction 

predictionTime Long This refers to time point in the imminent future 
(that is relative to the time that is needed for 
reconfiguration) for which the predicted value is 
considered valid/accurate (in UNIX Epoch) 

refersTo String The id of the application or component or (VM) host 
for which the prediction refers to 
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cloud String Cloud provider of the VM (with location) 

provider String Cloud provider name 
 

Next, we provide an example event: 
Listing 8 - Example Event [7] 

{ 
    "metricValue": 12.34, 
    "level": 1, 
    "timestamp": 143532341251, 
    "probability": 0.98, 
    "confidence_interval" : [8,15] 
    "predictionTime": 143532342, 
    "refersTo": "MySQL_12345", 
    "cloud": "AWS-Dublin", 
    "provider": "AWS" 
} 

 

Table 10 – Prediction Orchestrator–to–Forecasting Methods Event fields [8] 

[8] Prediction Orchestrator–to–Forecasting Methods Event fields 

Topic stop_forecasting.[forecasting_method] 

metric Strings[] Metrics for which a certain method should stop 
producing predictions (because of poor results) 

timestamp Long Date/time of the command of the orchestrator 

 

Next, we provide an example event: 
Listing 9 - Example Event [8] 

{ 
    "metrics": ["MaxCPULoad","MinCPULoad"], 
    "timestamp": 143532341251, 
} 

 

  



D2.2 Implementation of a holistic application monitoring system with QoS prediction 
capabilities 

 

Page 21 

 

   

 

Table 11 – Prediction Orchestrator–to–Forecasting Methods Event fields [9] 

 [9] Prediction Orchestrator–to–Forecasting Methods Event fields 

Topic start_forecasting.[forecasting_method] 

Metrics String[] 

  

Metrics for which a certain method should start 
producing predictions 

Timestamp Long Date/time of the command of the orchestrator 

epoch_start Long This time refers to the start time after which all 
predictions will be considered (i.e., t0) 

number_of_forward_
predictions 

Integer This is a number that indicates how many time points 
into the future do we need predictions for 

prediction_horizon Long This time equals to the time (in seconds) that is 
needed for the platform to implement an application 
reconfiguration (i.e., TR). 

 

Next, we provide an example event: 
Listing 10 - Example Event [9] 

{ 
    "metrics": ["MaxCPULoad","MinCPULoad"], 
    "timestamp": 143532341251, 
    "epoch_start": 143532341252, 
    "number_of_forward_predictions": 5, 
    "prediction_horizon": 600 
} 

3.4  EMS Administration Web GUI  
A new EMS feature, introduced in the context of Morphemic, is the addition of a web user interface for monitoring the 
operational status of EMS (both EPM and EPAs) as well as for carrying out certain administrative tasks. Before this 
feature, almost all tasks related to EMS (including monitoring, investigating problems, debugging etc.) had to be done 
from the command line. This required connecting to the VMs where EPM or EPAs were deployed which proved to be 
a quite tedious, time consuming and error prone approach. The new EMS Admin Web GUI aspires to solve several of 
these issues and make some of the most common EMS monitoring and administration significantly faster and easier. 

EMS Admin Web GUI has been implemented as a set of Single-Page Applications (SPA), using the well-known VueJS7 
framework, as well as several Node plugins. The core technologies involved in its implementation include JavaScript, 
NodeJS (for server-side JavaScript), NPM and VueJS framework. 

The advent of EMS Admin Web GUI required the extension of all EMS components (namely EPM and EPAs), as well 
as the control protocol, in order to collect and gather monitoring information. This information currently includes the 
system load where an EMS component runs (CPU, Memory, Disk space), the number of application metric events 
exchanged, the event topics, the locations of EPAs and their operational status. Moreover, the EMS REST API has been 
extended and is now possible to contact EPM and get EMS monitoring info. Additionally, EPM has been enhanced with 
Server-Side Events capability for providing a continuous stream of updates about the EMS status. EMS Admin Web 
GUI uses the server-side events approach for updating the displayed information. 

 
7 https://vuejs.org/ 
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Below, a few screenshots of the EMS Admin Web GUI are given. 

   
Figure 4 - EMS Admin Web GUI screenshots of EMS network info section (1/2) 

 
Figure 5 - EMS Admin Web GUI screenshots of EMS network info section (2/2) 
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Figure 6 - EMS Admin Web GUI screenshot with EPM and EPA locations 

  
Figure 7 - EMS Admin Web GUI screenshot of Commands section 

4 Persistent Storage  

Monitoring a Cloud/Edge application consists of collecting Key Performance Indicators (KPI) and any other kind of 
metrics for analysis or reconfiguration triggering. Therefore, the implementation of a holistic monitoring system requires 
a pipeline composed of a sensor (device or software for capturing metrics), monitoring collector (software that 
aggregates metrics), a storing system (time-series or a database system) and a set of tools for analysis and evaluation 
such as a QoS evaluator, forecasters etc.  

There is a need to establish a permanent connection with the Event Management System (EMS) for consuming metrics 
in real-time. The details on the type of connection and data exchanged between the persistent storage and the EMS can 
be found in the deliverable D2.1 [1].  

The persistent storage as part of this pipeline, is the storing engine where all metrics exposed by applications running 
on MORPHEMIC are stored. The persistent storage has the capability of grouping metrics by application, thus easing 
and speeding up any retrieval operations. Metrics stored are disposed of as a dataset to different forecasters as shown in 
the section 2.1. 

In the context of the MORPHEMIC project, a library (dataset maker) has been developed for ensuring the transformation 
of metrics to datasets for different analytics operations. 
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Figure 8 - Persistent storage internal architecture and flow 

From the above figure, we can observe the connection between the dataset maker library invoked by the forecasters and 
InfluxDB. The following parameters are required for generating a dataset. 

Table 12 – Dataset Generation / Configuration Details 

Dataset Generation / Configuration Details 

  

port : InfluxDB port 8086 

username: influxdb username 

password: influxdb password 

dbname: influxdb database name 

path_dataset: path where the dataset will be stored 

 

5 Translator  

Translator is the Proactive Adaptation’s architecture component, responsible for analysing the application CAMEL 
model and deducing the metrics and variables for which it is necessary to have predictions. It specifically focuses to the 
Service Level Objectives (SLOs) and the metric variables contained in the CAMEL model (specifically in the Utility 
Function), which it parses and extracts the metrics that comprise them. Subsequently, translator compiles the list of 
metrics that need to have predictions for them. Moreover, it generates the syntactic trees of all SLOs, necessary to the 
Severity-based SLO violation detector. 

The extracted information (metrics list and SLO syntactic trees) is used to create special purpose events intended for 
use by specific Proactive Adaption architecture components; (a) Translator–to–Forecasting Methods/Prediction 
Orchestrator Event that contains the list of metrics for which predictions are required, and (b) Monitored SLO Event, 
which contains the SLO syntactic trees, and is needed in the Severity-based SLO violation detector. For more 
information on these events please refer to the corresponding tables in section 3.3. 
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6 Forecasting algorithms 

6.1 Introduction 
In this section, we discuss different prominent forecasting methods that have been implemented as separate components 
to enable MORPHEMIC’s proactive adaptation support. They can be used either separately or in parallel according to 
the instructions of the Prediction Orchestrator to provide predictions for the required metrics for a specific time horizon 
into the future. The MORPHEMIC approach is open to plug in any additional implementations of forecasting algorithms 
that may be better with respect to datasets at hand. Currently, MORPHEMIC platform has analysed and can currently 
exploit the following forecasting algorithms: 

• ES-Hybrid,  
• N-Beats  
• TFT 
• Prophet 
• Sarima  
• GluonTS 
• Exponential Smoothing 

In the next sections, we provide a quick overview for each of these algorithms, their implementation details and their 
illustrative use and evaluation using two datasets from a Genome cloud application. This application involves a data 
parallel training of genome models, using Spark. The datasets which were generated contain observations for twelve 
monitoring metrics, collected at 30-second intervals. The datasets are available online8. As it is not appropriate to use 
only a single forecasting error metric to evaluate the quality of predictions [3], a number of well-known forecasting 
metrics were used: i) mean absolute error (MAE) [4] ; ii) mean squared error (MSE) - squared value of the RMSE [4]); 
iii) mean absolute percentage error (MAPE) [5] and iv) symmetric mean absolute percentage error (SMAPE) [6]. We 
note that in the results tables presented for each of the forecasters below we consider: i) the value 0 in cases where 
prediction for a certain metric was 100% accurate; ii) the value inf when the result of a KPI involves the division by 
zero (e.g., in SMAPE); and iii) the value -  in case the dataset didn’t involve adequate data for the forecaster to produce 
a valid prediction. 
 

6.2 ES-Hybrid  
6.2.1 Overview 

The ES-Hybrid forecaster was built on top of Smyl’s hybrid Exponential Smoothing – Recurrent Neural Networks (ES-
RNN) method9 [7] which was the winner of the M4 competition [8]. This forecasting algorithm is still widely used and 
has been extended to include GPU specific implementations [9] which aim to provide a solution to the algorithms’ 
performance, which is one of the major drawbacks of using this method. 

The forecasting methods’ main advantage is its effective mix of an exponential smoothing model with that of an LSTM 
network, and through this process the forecasts are more accurate than those of their singular counterparts, either purely 
statistical or ML approaches. 

There are three main steps of the algorithm 

(i) Deseasonalization 
(ii) Generation of forecasts 
(iii) Ensembling 

 
8 Datasets in the MORPHEMIC GitLab repository:  https://gitlab.ow2.org/melodic/time-series-data/-/tree/time-series-experiments/time-series-
data/benchmark_datasets/genome/deployment-reconfiguration-range-1-to-1 
9 ES-RNN implementation: https://hub.docker.com/repository/docker/imuntua/esrun 



D2.2 Implementation of a holistic application monitoring system with QoS prediction 
capabilities 

 

Page 26 

 

   

 

and there are quite a few implementations in different programming languages, each with their pros and cons. Initially 
we compiled and re-used the original C++ implementation. Whilst this implementation worked as expected regarding 
the M4 data as inputs, it did not provide the necessary flexibility to be used in an adaptable software component, nor 
could it be used to alternative datasets.  

We further examined other implementations, mainly in the python programming language in order to leverage the 
available ML and data handling libraries such as PyTorch10 and Pandas11 whilst at the same time allowing us to extend 
the implementation to enable us to create an adaptable component. We tested four different implementations and ended 
up extending and reusing the following PyTorch implementation12.  

6.2.2 Implementation Details 

The forecaster is made up of four (4) main components which are used by the main ESHybrid controller. The architecture 
of the component is based on an asynchronous model. Using a call back methodology, each module defines a set of 
handler methods, which can be plugged-in by different implementations. The ESHybrid controller acts as the main 
handler implementation for each sub-module hardwiring all the logic and focusing only on the components’ lifecycle. 

The implementation can be found here13 

 
Figure 9 - ES-Hybrid Component Architecture – new sub-components denoted with white background colour 

MORPHEMIC Messaging 

 
10 https://pytorch.org 
11 https://pandas.pydata.org 
12 https://github.com/kdgutier/esrnn_torch 
13 https://gitlab.ow2.org/melodic/morphemic-preprocessor/-/tree/morphemic-rc2.0/morphemic-forecasting-eshybrid 
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Due to the message-based architecture of the platform, we implemented a wrapper module around stomp.py14 to handle 
the necessary boilerplate required when creating a message enabled component. This provides helpers to connect to the 
message bus, handle named messages and provide static definition of all the topic / queue names used throughout in 
avoid naming issue common to this type of architecture. Furthermore, the library is self-contained and can be reused by 
other components using the python programming language. 

Persistence Handler 

This python module encapsulates the necessary logic to connect and manage data accessed through the dataset maker 
component (of the Persistent Storage). 

Scheduler 

This python module implements the necessary logic to generate the forecast timestamps based on the parameters defined 
in the start_forecasting message. Furthermore, it provides a callback handler which allows the component to determine 
when the forecasting should occur based on the epoch and time window defined in the start_forecasting message. This 
module is also self-contained and can be reused by other components using the python programming language. 

Model Handler 

One of the main requirements of the ES-Hybrid component is to be able to provide forecasting metrics as well as handle 
an up to date internal model based on a constantly updated stream of metric data, and as such it needs to be able to 
handle forecasting, and (re-)training in an asynchronous manner.  

In order aid in the testing of the component we implemented a Configuration module as well as a DataHandler which 
allowed us to plug-in different implementations until reaching the final version found in the repository. Through the 
configuration component we are able to fine-tune the ESRNN implementation based on the requirements of the data 
stream.  

The DataHandler transform the data by performing upscaling using linear interpolation up to one (1) second, such that 
the data used to train the model can come into the model in any variation of time. Any n second interval is upscaled to 
1 second, providing the maximum flexibility for the forecasting timestamps.  

The component is initially configured to compute 3600 future predictions, defined as the training output size. This means 
that it can provide results for at least one hour without receiving new data. Upon start_forecasting we can use the horizon 
as well as the number_of_metrics, in order to generate shorter output windows. For example, if we are required to 
provide 5 predictions for every 30 seconds, then we can set the output_size to be 10 multiples for 150seconds (since we 
are upscaling to 1s), this means that we will be able to maintain this model 1500seconds at which point we will need to 
retrain the model. The number of future predictions, which can be updated at runtime per new model, per retrain, 
determines for how long the model can be considered “active”. 

Once the data is properly upscaled we then initiate the model training by using the configurable ESRNN implementation 
in its own thread, by controlling its status, and thus protecting multiple training threads or obsolete trained models.  

The ESHybrid component can be run as a standalone binary, however we also provided docker container. Runtime 
configuration can be provided by using a configuration file which can be determined through the –config parameter 
when running as a standalone binary.  

When using the docker container, configuration can be specified using volume mounts, and mounting a local 
configuration file to the /app/sync.cfg mount point.  

A sample config file is described below. 

 
14 https://pypi.org/project/stomp.py/ 
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6.2.3 Illustrative use 

To use the ESHybrid forecasting module, you can either run it as part of the MORPHEMIC platform or by implementing 
a handler which triggers the necessary functionality in the main controller. 

We evaluated the forecaster different metrics provided by two datasets. In the following tables, we illustrate the results 
of the experiments made based on the Genome 12 and Genome 18 dataset respectively. MAE, MSE, MAPE, SMAPE 
were used as evaluation metrics for the following comparison. 

Table 13 - ESHybrid forecaster performance on the Genome 12 dataset (Genome 12/13-2-2021) 

 mae mse mape smape 

ETPercentile 3.114145566339 26.91982698733397 0.042417414324241 0.038991378668430 

NotFinishedOn 
TimeContext 474.9234089611 403488.767200348 0.007754527087366 0.007701933421809 

RemainingSimulation
TimeMetric - - - - 

NotFinished 474.9234089611 403488.767200348 0.007754527087366 0.007701933421809 

WillFinishTooSoon 
Context 404.4992294520 312580.3272745923 0.008214468570769 0.008151504989457 

NotFinishedOnTime 474.9234089611 403488.767200348 0.007754527087366 0.007701933421809 

EstimatedRemainingv
TimeContext 564.3234712783 550749.442206106 - 0.384676090693028 

SimulationLeft 
Number 50.37160481492 4505.705204639416 - 0.361061191811129 

TotalCores 0.000176144789 5.046087612295071
5e-08 0.000176144789343 0.005778379615034 

[persistence] 
application=default_application 
host=localhost 
port=8086 
username=morphemic 
password=password 
dbname=morphemic 
path_dataset=/tmp/out/dataset-maker 
 

[messaging] 
host=localhost 
port=61610 
username=admin  
password=admin 
 

 [listener] 
id=eshybrid  
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MinimumCores - - - - 

SimulationElapsed 
Time 366.7306827910 177498.9836242536 0.005800106120270 0.005778379615034 

MinimumCores 
Context - - - - 

 

Table 14 - ESHybrid forecaster performance on the Genome 18 dataset (Genome 20/21-2-2021) 

 mae mse mape smape 

ETPercentile 4.677438285482 33.64481534186169 0.065609979905374 0.061811692858101 

NotFinishedOn 
TimeContext  1101.887562814  1637167.922918425  0.019604583343204  0.019350190672584 

RemainingSimulation
TimeMetric - - - - 

NotFinished 1101.887562814 1637167.922918425 0.019604583343204 0.019350190672584 

WillFinishTooSoon 
Context  1049.276542870  1491155.258001562  0.023105869663074  0.022750339859257 

NotFinishedOnTime 1101.887562814 1637167.922918425 0.019604583343204 0.019350190672584 

EstimatedRemaining 
TimeContext 1298.736902284 2331138.431292067 - 0.456256100849264 

SimulationLeft 
Number 58.63249904306 5118.422976705372 - 0.407208573625380 

TotalCores 0.000173457902 
 
4.763212257673226
e-08 

0.000173457902879 0.000173436702077 

MinimumCores - - - - 

SimulationElapsed 
Time 331.1279247801 143902.9222342333 0.005753468996954 0.005732207497522 

MinimumCores 
Context - - - - 

 

6.3 N-beats  
6.3.1 Overview 

N-Beats [10] is optimized for solving the univariate times series point forecasting problem. It is a fully deep neural 
architecture based on backward and forward residual links and a very deep stack of fully-connected layers. The 
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architecture has a number of desirable properties, being interpretable, applicable without modification to a wide array 
of target domains, and fast to train. N-Beats outperformed winner of M4[8] competition. It means that it achieves the 
best scores on 100k series from different domains.  

Pros: 

• Achieves good results without modification to a wide array of target domains  
• Relatively fast (comparing to other deep neural networks)  

Cons: 

• Optimized for univariate time series (available in this form in implementations) 
• Requires more data than statistical methods to function satisfactorily 

6.3.2 Implementation 

The implementation of the N-Beats model was taken from the pythorch-forecasting library [3] integrated with the 
pythorch lightning library. The training and prediction are wrapped in a docker image. It retrieves the monitoring 
metrics which should be predicted using the metrics_to_predict topic, as well as the start_forecasting.nbeats topic. 
It communicates with the Persistent Storage to retrieve monitoring data for the metrics it should predict. When 
predictions are made, they are published in the intermediate_predictions.{metric_name} topic of the broker (where 
{metric_name} is the name of the metric).  

The rest of the N-Beats components are similar to other forecasters.  Below, we provide a list of N-Beats environment 
variables: 

• AMQ_HOSTNAME 
• AMQ_USER 
• AMQ_PASSWORD 
• AMQ_PORT 
• APP_NAME 
• METHOD (nbetas) 
• DATA_PATH (path were data from influx will be saved) 
• INFLUXDB_HOSTNAME 
• INFLUXDB_PORT 
• INFLUXDB_USERNAME 
• INFLUXDB_PASSWORD 
• INFLUXDB_DBNAME 

N-Beats config (example): 
Listing 11 - N-Beats config 

training: 

bs: 64 

 max_epochs: 40 

 loss: rmse (e.g. mae, mase) 

 save_path: 

      models 

    dataloader_path: 

      dataloader 

context_length_ratio:  

    10 (prediction length to context history ratio) 
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The current implementation of the forecaster is available in GitLab15. 

We explain in the following the main scripts required by the forecaster. 
Table 15 – N-Beats Forecaster’s main script 

Forecaster’s main scripts 

main.py: Is the entrypoint of the forecaster.  

It listens to the prediction start topic 

Runs independently train.py and predict.py 

train.py: Includes the source code performing the training process. 
Periodically performs model retraining and saves its weights.  
The training is performed on all available data (for the given 
metric) from influx. The validation set covers the last m points 
in the series and is not separable from the training set, which 
is rare in machine learning, but helps to quickly adapt to 
sudden changes in the series. 

predict.py: Includes the source code performing the prediction process. 
Periodically predicts each metric. Prediction is only possible 
when there are enough fresh rows in the database. Prediction 
module listens to stop prediction topic. 

src/dataset_maker.py: Includes the different functions required to gather the 
collected data from the persistent storage. 

src/preprocess_dataset.py: Preprocesses dataset from dataset_maker.py. Checks the time gaps 
between the consecutive timestamps. If the time gap is large 
with respect to metric granularity, then series is splitted, if 
it is short then missing values are filled with interpolation 
methods. Checks if there is enough of fresh data to make 
prediction for actual time. Applies data transformation and 
creates dataloaders for model. 

Docker_image: Includes the Dockerfile of the N-Beats image. It enables the 
installation of the different libraries required by the 
forecaster and the running of main file to start the forecaster. 
Includes the env file listing the different environment 
variables required by the forecaster to run and communicate with 
the different other services. 

Like the other forecasters, nbetas forecaster depends on the following services: 

• ActiveMQ is the event broker that we are using to communicate with the other subcomponents mainly the 
Prediction orchestrator. The library ‘amq-message-python-library' is used which was developed in terms of  
Morphemic. 

• Persistent storage is the service that manages the collection of the data related to the metrics that need to be 
forecasted. 

 
15 N-Beats forecaster in the MORPHEMIC GitLab repository: https://gitlab.ow2.org/melodic/morphemic-preprocessor/-/tree/morphemic-
rc2.0/deployment/nbeats 
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6.3.3 Illustrative use 

The N-Beats forecaster was evaluated using different metrics provided by two datasets. In the following tables, we 
illustrate the results of the experiments made based on the Genome 12 and Genome 18 dataset respectively. MAE, 
MSE, MAPE, SMAPE were used as evaluation metrics for the following comparison. 

Table 16 - N-Beats forecaster performance on the Genome 12 dataset (Genome 12/13-2-2021) 

 mae mse mape smape 

RemainingSimulatio
nTimeMetric 0.7346 0.6764 0.0000 0.0000 

MinimumCores 0.0000 0.0000 NaN 2.0000 

NotFinishedOnTime
Context 64.2549 14395.1055 0.0011 0.0011 

EstimatedRemaining
TimeContext 59.9467 15509.4000 NaN 0.0447 

TotalCores 0.0000 0.0000 0.0000 0.0000 

WillFinishTooSoon 
Context 65.1283 14558.8579 0.0014 0.0014 

SimulationLeft 
Number 4.3672 71.1050 NaN 0.0384 

SimulationElapsed 
Time 0.2734 0.1164 0.0000 0.0000 

MinimumCores 
Context 0.0000 0.0000 NaN 2.0000 

ETPercentile 0.9652 2.6898 0.0116 0.0113 

NotFinishedOnTime 63.4267 13717.0021 0.0011 0.0011 

NotFinished 65.4352 13661.5580 0.0011 0.0011 
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 Table 17 - N-Beats forecaster performance on the Genome 18 dataset (Genome 20/21-2-2021) 

 mae mse mape smape 

RemainingSimulatio
nTimeMetric 1.0183 1.2597 0.0000 0.0000 

MinimumCores 0.0000 0.0000 NaN 2.0000 

EstimatedRemaining
TimeContext 103.8079 37207.3712 NaN 0.0564 

TotalCores 0.0000 0.0000 0.0000 0.0000 

WillFinishTooSoonC
ontext 93.4708 30967.0611 0.0020 0.0020 

SimulationLeft 
Number 4.8332 74.6092 NaN 0.0426 

SimulationElapsedTi
me 0.4487 0.2790 0.0000 0.0000 

MinimumCores 
Context 0.0000 0.0000 NaN 2.0000 

ETPercentile 0.9209 2.5731 0.0117 0.0114 

NotFinishedOnTime 92.4963 29385.2247 0.0016 0.0016 

NotFinished 94.0276 30012.8308 0.0017 0.0017 

NotFinishedOnTime
Context 90.3145 29395.6334 0.0016 0.0016 

 

6.4 Temporal Fusion Transformer (TFT) 
6.4.1 Overview 

TFT is an attention-based neural architecture that combines high-performance multi-horizon forecasting with 
interpretable insights into temporal dynamics [4]. TFT utilizes specialized components to select relevant features and a 
series of gating layers to suppress unnecessary components, enabling high performance in a wide range of scenarios. 
TFT shows significant performance improvements over existing benchmarks on a variety of real-world datasets. 

Pros: 

• Works with mixed type of data e.g., real unknown in feature values, categorical unknown in feature values, real 
known in feature values, static values etc.  

• Interpretable results 
• Handle well multivariate series 

Cons: 

• Requires more data than statistical methods to function satisfactorily 
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6.4.2 Implementation 

The implementation of the TFT model was taken from the pythorch-forecasting library [11] integrated with the pythorch 
lightning library. The training and prediction are wrapped in a docker image. Docker image  retrieves the monitoring 
metrics which should be predicted using the metrics_to_predict topic, as well as the start_forecasting.tft topic. It 
communicates with the Persistent Storage to retrieve monitoring data for the metrics it should predict. When 
predictions are made, they are published in the intermediate_predictions.{metric_name} topic of the broker (where 
{metric_name} is the name of the metric). 

 List of TFT enviromental variables: 

• AMQ_HOSTNAME 
• AMQ_USER 
• AMQ_PASSWORD 
• AMQ_PORT 
• APP_NAME 
• METHOD (nbetas) 
• DATA_PATH (path were data from influx will be saved) 
• INFLUXDB_HOSTNAME 
• INFLUXDB_PORT 
• INFLUXDB_USERNAME 
• INFLUXDB_PASSWORD 
• INFLUXDB_DBNAME 

TFT config (example): 
Listing 12 - TFT config 

training: 

  bs: 64 

  max_epochs: 40 

  loss: quantile (e.g. rmse, mae) 

dataset: 

    tv_unknown_reals: [] 

    known_reals: [] 

    tv_unknown_cat: [] 

    static_reals: [] 

model: 

    learning_rate: 0.05 

    hidden_size: 32 

    attention_head_size: 1 

    hidden_continuous_size: 16 

    output_size: 7 

save_path: 

    models 

dataloader_path: 
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    dataloader 

context_length_ratio:  12 (prediction 
length to context history ratio) 

 

The current implementation of the forecaster is available in GitLab16. 

We explain in the following the main scripts required by the forecaster. 
Table 18 – TFT Forecaster’s main scripts  

Forecaster’s main scripts 

main.py: Is the entrypoint of the forecaster. It listens to the 
prediction start topic 

Runs independently train.py and predict.py 

train.py: Includes the source code performing the training process. 
Periodically performs model retraining and saves its weights.  
The training is performed on all available data (for the given 
metric) from influx. The validation set covers the last m points 
in the series and is not separable from the training set, which 
is rare in machine learning, but helps to quickly adapt to 
sudden changes in the series. 

predict.py: Includes the source code performing the prediction process. 
Periodically predicts each metric. Prediction is only possible 
when there are enough fresh rows in the database. Prediction 
module listens to stop prediction topic. 

src/dataset_maker.py: Includes the functions required to gather the collected data 
from the persistent storage. 

src/preprocess_dataset.py: Preprocesses dataset from dataset_maker.py. Checks the time gaps 
between the consecutive timestamps. If the time gap is large 
with respect to metric granularity, then series is split, if it 
is short then missing values are filled with interpolation 
methods. Checks if there is enough fresh data to make prediction 
for actual time. Applies data transformation and creates es 
dataloaders for model. 

Docker_image: Includes the Dockerfile of the TFT image. It enables the 
installation of the different libraries required by the 
forecaster and the running of main file to start the forecaster. 
Includes the env file listing the different environment 
variables required by the forecaster to run and communicate with 
the different other services. 

Like the other forecasters, TFT forecaster depends on the following services: 

 
16 TFT forecaster in the MORPHEMIC GitLab repository: https://gitlab.ow2.org/melodic/morphemic-preprocessor/-/tree/morphemic-
rc2.0/deployment/tft 
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• ActiveMQ is the event broker that we are using to communicate with the other subcomponents mainly the 
Prediction orchestrator. The library ‘amq-message-python-library' which was developed for MORPHEMIC 
Project proposal is used. 

• Persistent storage is the service that manages the collection of the data related to the metrics that need to be 
forecasted. 

6.4.3 Illustrative use 

The TFT forecaster was evaluated using different metrics provided by two datasets. In the following tables, we illustrate 
the results of the experiments made based on the Genome 12 and Genome 18 dataset respectively. MAE, MSE, MAPE, 
SMAPE were used as evaluation metrics for the following comparison. 

Table 19 - TFT forecaster performance on the Genome 12 dataset (Genome 12/13-2-2021) 

 mae mse mape smape 

MinimumCores 0.0000 0.0000 NaN 2.0000 

NotFinishedOnTim
e 90.8372 28458.7025 0.0016 0.0016 

SimulationElapsed
Time 4.8891 28.1442 0.0001 0.0001 

MinimumCoresCo
ntext 0.0000 0.0000 NaN 2.0000 

TotalCores 0.0000 0.0000 0.0000 0.0000 

ETPercentile 0.5882 1.3668 0.0073 0.0072 

RemainingSimulati
onTimeMetric 8.1881 81.5680 0.0002 0.0002 

WillFinishTooSoon
Context 99.4750 34914.5868 0.0022 0.0022 

SimulationLeftNu
mber 4.6790 86.1513 NaN 0.0427 

EstimatedRemaini
ngTimeContext 84.5214 30693.2530 NaN 0.0504 

NotFinishedOnTim
eContext 94.8311 26680.2110 0.0017 0.0017 

NotFinished 94.2905 27321.3372 0.0017 0.0017 
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 Table 20 - TFT forecaster performance on the Genome 18 dataset (Genome 20/21-2-2021) 

 mae mse mape smape 

SimulationLeftNumber 5.9925 84.4109 NaN 0.0502 

NotFinishedOnTime 94.1633 27117.5697 0.0017 0.0017 

MinimumCoresContext 0.0000 0.0000 NaN 2.0000 

TotalCores 0.0000 0.0000 0.0000 0.0000 

EstimatedRemaining 
TimeContext 187.2061 58645.4737 NaN 0.0793 

SimulationElapsedTime 3.4276 21.2428 0.0001 0.0001 

WillFinishTooSoon 
Context 99.3047 31777.0196 0.0022 0.0022 

NotFinished 87.7060 29422.6164 0.0015 0.0015 

RemainingSimulation 
TimeMetric 8.4827 84.8350 0.0002 0.0002 

MinimumCores 0.0000 0.0000 NaN 2.0000 

NotFinishedOnTime 
Context 89.3310 30567.7021 0.0016 0.0016 

ETPercentile 0.6349 1.6176 0.0080 0.0078 

 

6.5 Prophet  
6.5.1 Overview 

Prophet is a procedure for forecasting time series data based on an additive model where non-linear trends are fit with 
yearly, weekly, and daily seasonality, plus holiday effects [21]. It works best with time series that have strong seasonal 
effects and several seasons of historical data. 

The Prophet uses a decomposable time series model with three main model components: trend, seasonality, and holidays. 
They are combined in the following equation: 

y(t)= g(t) + s(t) + h(t) + εt 

g(t): piecewise linear or logistic growth curve for modelling non-periodic changes in time series 

s(t): periodic changes (e.g., weekly/yearly seasonality) 

h(t): effects of holidays (user provided) with irregular schedules 

εt: error term accounts for any unusual changes not accommodated by the model 

Using time as a regressor, Prophet is trying to fit several linear and non-linear functions of time as components. 
Modelling seasonality as an additive component is the same approach taken by exponential smoothing in Holt-Winters 
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technique17. Prophet is framing the forecasting problem as a curve-fitting exercise rather than looking explicitly at the 
time-based dependence of each observation within a time series. 

The main highlights of Prophet are: 

• Accurate and fast, since it’s built in Stan, a programming language for statistical inference written in C++. 
• An additive regression model where non-linear trends are fit with yearly, weekly, and daily seasonality, plus 

holiday effects:  
o A piecewise linear or logistic growth curve trend. Prophet automatically detects changes in trends by 

selecting changepoints from the data  
o A yearly seasonal component modelled using Fourier series  
o A weekly seasonal component using dummy variables  
o A user-provided list of important holidays. 

• Robust to missing data and shifts in the trend, and typically handles outliers. 
• Easy procedure to tweak and adjust forecast while adding domain knowledge or business insights. 

However, Prophet requires a huge amount of data (i.e. at least one year of time-series data18) to be able to perform good 
forecasting results. 

6.5.2 Implementation 

The implementation of Prophet was performed using the Prophet forecasting library provided by Facebook and available 
in Python. It provides intuitive parameters which are easy to tune.  

We have applied some data transformation on the datasets before training prophet models. The main data transformers 
that have been used are: Log, Cube Root, Square Root, Standardization and BoxCox were applied. The prediction results 
were evaluated by comparing the effect of each of the transformers. MAE, MSE, MAPE, SMAPE have been used as 
evaluators metrics for the comparison. 

Hyperparameter tuning has been also applied for choosing the best performing model. The list of hyperparameters for 
prophet are:  

• seasonality_mode 
• changepoint_prior_scale  
• n_changepoints 
• growth 
• changepoint_range 
• interval_width 
• changepoints  
• yearly_seasonality  
• weekly_seasonality  
• daily_seasonality  
• seasonality_prior_scale  
• mcmc_samples  

The current implementation of the forecaster is available in GitLab19. We explain in the following the main script 
required by the forecaster. 

 
17 https://www.rdocumentation.org/packages/forecast/versions/8.15/topics/forecast.HoltWinters 
18 https://godatadriven.com/blog/facebooks-prophet-forecasting-stores-transactions/ 
19 Prophet forecaster in the MORPHEMIC GitLab repository: https://gitlab.ow2.org/melodic/morphemic-preprocessor/-/tree/morphemic-
rc2.0/forecasting_prophet 



D2.2 Implementation of a holistic application monitoring system with QoS prediction 
capabilities 

 

Page 39 

 

   

 

Table 21 - Prophet forecaster’s main scripts 

Forecaster’s main scripts 

main.py: Is the entry point of the forecaster. Runs independently the 
forecaster and the listener scripts that we will describe 
below. 

Prophet_forecaster.py: Includes the source code performing the training process and 
the prediction process. 

Prophet_listener.py: Includes the source code managing the subscription to the 
different topics to be able to receive the different messages 
on the one hand and the sending of messages including the 
prediction results over time on the other hand. 

Dataset_maker.py: Includes the different functions required to gather the 
collected data from the persistent storage. 

Docker_image: Includes the Dockerfile of the prophet image. It enables the 
installation of the different libraries required by the 
forecaster and the running of main file to start the 
forecaster. 

Includes the variables.env file listing the different 
environment variables required by the forecaster to run and 
communicate with the different other services. 

To use Prophet20 as forecaster, you can use directly the image published in the Gitlab registry21 and run the following 
command:  
docker run -dit --env-file variables.env --net your_network 
gitlab.ow2.org:4567/melodic/morphemic-preprocessor/prophet:morphemic-rc2.0 

Variables.env refers to the file containing the following environment variables: 

• ACTIVEMQ_USER: refers to the username that has to be used in order to connect to the ActiveMQ server. 
• ACTIVEMQ_PASSWORD: refers to the password associated to the specified ACTIVEMQ_USER in order to 

connect to the ActiveMQ server. 
• ACTIVEMQ_PORT: refers to the port assigned to the ActiveMQ server. 
• ACTIVEMQ_HOSTNAME: refers to the hostname of the ActiveMQ server. 
• APP_NAME: refers to the name of the application that we have to gather its data. 
• DATA_PATH: refers to the path where we will save the collected data in the docker container. 
• INFLUXDB_HOSTNAME: refers to the hostname of the InfluxDB server. 
• INFLUXDB_PORT: refers to the port of the InfluxDB server. 
• INFLUXDB_USERNAME: refers to the username that has to be used in order to connect to the InfluxDB 

server. 
• INFLUXDB_PASSWORD: refers to the password associated to the specified INFLUXDB_USERNAME in 

order to connect to the InfluxDB server. 
• INFLUXDB_DBNAME: refers to the name of the database from which, we will collect the data. 

 
20 https://pypi.org/project/prophet/ 
21 gitlab.ow2.org:4567/melodic/morphemic-preprocessor/prophet:morphemic-rc2.0 
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your_network: refers to the network on which the other required services are running. 
Like the other forecasters, Prophet forecaster depends on the following services: 

• ActiveMQ is the event broker that we are using to communicate with the other subcomponents mainly the 
Prediction orchestrator. The library ‘amq-message-python-library' which was developed for MORPHEMIC 
Project proposal is used. 

• Persistent storage is the service that manages the collection of the data related to the metrics that need to be 
forecasted. 

6.5.3 illustrative use 

The Prophet forecaster was evaluated using different metrics provided by two datasets. In the following tables, we 
illustrate the results of the experiments made based on the Genome 12 and Genome 18 dataset respectively. MAE, 
MSE, MAPE, SMAPE were used as evaluation metrics for the following comparison. 
 

Table 22 - Prophet forecaster performance on the Genome 12 dataset 

Metric mae mse mape smape 

ETPercentile 1.317 3.68 0.015 0.015 

NotFinishedOnTime 
Context 30.4 36783 0.0005 0.0005 

RemainingSimulation 
TimeMetric 30.4 36783 0.0006 0.0006 

NotFinished 162.7 85936 0.013 0.01 

WillFinishTooSoon 
Context 157.86 69963 0.01 0.009 

NotFinishedOnTime 162.79 85936 0.01 0.01 

EstimatedRemaining 
TimeContext 165.78 76036 0.025 0.025 

SimulationLeftNumber 3.78 29.5 0.007 0.007 

TotalCores 0 0 0 0 

MinimumCores 10.4 3539 nan 0.72 

SimulationElapsedTime 30.4 36783 0.0005 0.0005 

MinimumCoresContext 10.4 3539 nan 0.72 
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Table 23 - Prophet forecaster performance on the Genome 21 dataset 

Metric mae mse mape smape 

ETPercentile 1.37 4.52 0.017 0.017 

NotFinishedOnTime 
Context 299.2 214095 0.011 0.01 

RemainingSimulation 
TimeMetric 33.3 40284 0.0008 0.0007 

NotFinished 299.2 214095 0.01 0.01 

WillFinishTooSoon 
Context 293.3 193415 0.01 0.01 

NotFinishedOnTime  299.2 214095 0.01 0.01 

EstimatedRemaining 
TimeContext 338.25 321860 0.03 0.03 

SimulationLeftNumber 3.67 27.9 0.007 0.007 

TotalCores 0 0 0 0 

MinimumCores 11.45 3606 nan 0.78 

SimulationElapsedTime 33.3 40284 0.0006 0.0006 

MinimumCoresContext 11.45 3606 nan 0.78 

6.6 Sarima  
6.6.1 Overview 

Seasonal Autoregressive Integrated Moving Average, SARIMA or Seasonal ARIMA, is an extension of ARIMA that 
explicitly supports univariate time series data with a seasonal component [20]. It’s often used as benchmark.  As an 
input can also take array of exogenous regressors. Sarima needs to perform fit its weights before every prediction. In 
this work we use gridsearch for  SARIMA hyperparameters search. 

Pros: 

• Easy to use 
• Works well also on short series  

Cons: 

• Needs to fit before every prediction 
• Requires hyperparameters finetuning to work well  

6.6.2 Implementation 

SARIMA implementation was taken from python statsmodels library [17]. The training and prediction are wrapped in 
a docker image. It retrieves the monitoring metrics which should be predicted using the metrics_to_predict topic, as 
well as the start_forecasting.sarima topic. It communicates with the Persistent Storage to retrieve monitoring data 
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for the metrics it should predict. When predictions are made, they are published in the 
intermediate_predictions.{metric_name} topic of the broker (where {metric_name} is the name of the metric). 

Below we provie a list of SARIMA enviroment variables: 

• AMQ_HOSTNAME 
• AMQ_USER 
• AMQ_PASSWORD 
• AMQ_PORT 
• APP_NAME 
• METHOD (N-Beats) 
• DATA_PATH (path where data from influx will be saved) 
• INFLUXDB_HOSTNAME 
• INFLUXDB_PORT 
• INFLUXDB_USERNAME 
• INFLUXDB_PASSWORD 
• INFLUXDB_DBNAME 

The current implementation of the forecaster is available in GitLab22. We explain in the following the main scripts 
required by the forecaster. 

Table 24 - Sarima forecaster’s main scripts   

Forecaster’s main scripts 

main.py: Is the entrypoint of the forecaster. It listens to the 
prediction start topic. Runs predict.py 

predict.py: Includes the source code performing the prediction process. 
Periodically predicts each metric. Prediction is only possible 
when there are enough fresh rows in the database. Prediction 
module listens to stop prediction topic. During each prediction, 
several sarima models are fitted on historical data and model 
with the best AIC is chosen for making a final prediction. 

src/dataset_maker.py: Includes the different functions required to gather the 
collected data from the persistent storage. 

src/preprocess_dataset.py: Preprocesses dataset from dataset_maker.py. Checks the time gaps 
between the consecutive timestamps. If the time gap is large 
with respect to metric granularity, then series are splitted, if 
it is short then missing values are filled with interpolation 
methods. Checks if there is enough of fresh data to make 
prediction for actual time. 

Docker_image: Includes the Dockerfile of the SARIMA image. It enables the 
installation of the different libraries required by the 
forecaster and the running of main file to start the forecaster. 

Includes the env file listing the different environment 
variables required by the forecaster to run and communicate with 
the different other services. 

 
22 Sarima forecaster in the MORPHEMIC GitLab repository: https://gitlab.ow2.org/melodic/morphemic-preprocessor/-/tree/morphemic-
rc2.0/deployment/arima 
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Like the other forecasters, SARIMA forecaster depends on the following services: 

• ActiveMQ is the event broker that we are using to communicate with the other subcomponents mainly the 
Prediction orchestrator. The library ‘amq-message-python-library' which was developed for MORPHEMIC 
Project proposal is used. 

• Persistent storage is the service that manages the collection of the data related to the metrics that need to be 
forecasted. 
 

6.6.3 Illustrative use 

SARIMA is integrated with MORPHEMIC in the same way as the rest of the forecasters. To use SARIMA as forecaster, 
one can run morphemic. The SARIMA forecaster was evaluated using different metrics provided by two datasets. In 
the following tables, we illustrate the results of the experiments made based on the Genome 12 and Genome 18 dataset 
respectively. MAE, MSE, MAPE, SMAPE were used as evaluation metrics for the following comparison. 

Table 25 - Sarima forecaster performance on the Genome 12 dataset (Genome 12/13-2-2021) 

 mae mse mape smape 

ETPercentile 0.7636 1.6513 0.0094 0.0093 

NotFinishedOnTime 
Context 76.6898 16498.2163 0.0013 0.0013 

RemainingSimulation 
TimeMetric 0.2159 0.0594 0.0000 0.0000 

NotFinished 76.6898 16498.2163 0.0013 0.0013 

WillFinishTooSoon 
Context 76.8393 16573.7722 0.0016 0.0016 

NotFinishedOnTime 76.6898 16498.2163 0.0013 0.0013 

EstimatedRemaining 
TimeContext 77.6851 16911.2814 NaN 0.0782 

SimulationLeftNumber 6.1957 124.5856 NaN 0.0667 

TotalCores 0.0000 0.0000 0.0000 0.0000 

MinimumCores 0.0000 0.0000 NaN NaN 

SimulationElapsedTime 0.1866 0.0444 0.0000 0.0000 

MinimumCoresContext 0.0000 0.0000 NaN NaN 

 

 Table 26 -  SARIMA forecaster performance on the Genome 18 dataset (Genome 20/21-2-2021) 

 mae mse mape smape 

MinimumCoresContext 0.0000 0.0000 NaN NaN 
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RemainingSimulation 
TimeMetric 0.2439 0.0759 0.0000 0.0000 

MinimumCores 0.0000 0.0000 NaN NaN 

NotFinishedOnTime 
Context 146.0565 58657.5318 0.0026 0.0026 

SimulationLeftNumber 6.6988 139.5546 0.2088 0.0744 

SimulationElapsedTime 0.2071 0.0547 0.0000 0.0000 

WillFinishTooSoon 
Context 146.5062 58983.0653 0.0032 0.0032 

TotalCores 0.0000 0.0000 0.0000 0.0000 

EstimatedRemaining 
TimeContext 147.9898 59822.5965 0.2621 0.0875 

ETPercentile 0.6962 1.1242 0.0095 0.0094 

NotFinished 146.0565 58657.5318 0.0026 0.0026 

NotFinishedOnTime 146.0565 58657.5318 0.0026 0.0026 

 

6.7 GluonTS  
6.7.1 Overview 

Gluon Time Series (GluonTS) is a Python toolkit developed by Amazon scientists for building, evaluating, and 
comparing deep learning–based time series models [22]. GluonTS  is based on the Gluon interface to Apache MXNet 
and provides components that make building time series models simple and efficient. GluonTS provides utilities for 
loading and iterating over time series datasets, state of the art models ready to be trained, and building blocks to define 
users’ own models and quickly experiment with different solutions.  

Deep learning models for time series modelling commonly include components such as recurrent neural networks based 
on Long Short-Term Memory (LSTM) cells, convolutions, and attention mechanisms. This makes using a modern deep-
learning framework, such as Apache MXNet, a convenient basis for developing and experimenting with such models. 
However, time series modelling also often requires components that are specific to this application domain. GluonTS 
provides these time series modelling-specific components on top of the Gluon interface to MXNet. 

 In particular, GluonTS contains: 

• Higher-level components for building new models, including generic neural network structures like sequence-
to-sequence models and components for modelling and transforming probability distributions. 

• Data loading and iterators for time series data, including a mechanism for transforming the data before it is 
supplied to the model. 

• Reference implementations of several state-of-the-art neural forecasting models. 
• Tooling for evaluating and comparing forecasting models. 

However, GluonTS has some limitations regarding the time granularity in the time series. GluonTS requires at least 1 
minute time difference between the consecutive datapoints in the time series. 
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6.7.2 Implementation 

For the implementation of this forecaster, the Gluon Time Series Python toolkit23 developed by Amazon is used. It 
includes several subpackages and submodules for different functionalities such as the gluonts.dataset package, 
gluonts.evaluation package, or gluonts.model package etc. The gluonts.model package includes several submodules for 
different types of models. In this work, we have mainly used the DeepAR for training models and forecasting. 

We have applied some data transformation on the datasets before training gluonTS models. Mainly, the data 
transformers: Log, Cube Root, Square Root, and Standardization were applied. The prediction results were evaluated 
by comparing the effect of each of the transformers. MAE, MSE, MAPE, SMAPE have been used as evaluation metrics 
for the comparison. Knowing that GluonTS does not accept data with timestamp difference less than 1 minutes, we have 
applied some changes of the datapoints timestamps to adapt to this condition. 

Hyperparameter tuning has been also applied for choosing the best performing model. The list of hyperparameters for 
GluonTS DeepAR model are:  

• batch_size  
• epochs  
• num_batches_per_epoch 
• learning_rate  
• context_length  

The current implementation of the forecaster is available in GitLab24. We explain in the following the main scripts 
required by the forecaster. 

Table 27 - GluonTS forecaster’s main scripts   

Forecaster’s main scripts 

main.py: Is the entrypoint of the forecaster. Runs independently the 
forecaster and the listener scripts that we will describe 
below. 

Gluonts_forecaster.py: Includes the source code performing the training and the 
prediction processes using DeepAR algorithm. 

Gluonts_listener.py: Includes the source code managing the subscription to the 
different topics to be able to receive the different messages 
on the one hand and the sending of messages including the 
prediction results over time on the other hand. 

Dataset_maker.py: Includes the different functions required to gather the 
collected data from the persistent storage. 

Docker_image: Includes the Dockerfile of the gluonmachines image. It enables 
the installation of the different libraries required by the 
forecaster and the running of the main file to start the 
forecaster. 

Includes variables.env file listing the different environment 
variables required by the forecaster to run and to communicate 
with the different other services. 

 
23 https://ts.gluon.ai/  
24 GluonTS forecaster in the MORPHEMIC GitLab repository: https://gitlab.ow2.org/melodic/morphemic-preprocessor/-/tree/morphemic-
rc2.0/forecasting_gluonts  
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To use GluonTS as forecaster, you can use directly the image published in the Gitlab registry25 and run the following 
command:  
docker run -dit --env-file variables.env --net your_network 
gitlab.ow2.org:4567/melodic/morphemic-preprocessor/gluonmachines:morphemic-rc2.0 

Variables.env refers to the file containing the following environment variables: 

• ACTIVEMQ_USER: refers to the username that has to be used in order to connect to the ActiveMQ server. 
• ACTIVEMQ_PASSWORD: refers to the password associated to the specified ACTIVEMQ_USER in order to 

connect to the ActiveMQ server. 
• ACTIVEMQ_PORT: refers to the port assigned to the ActiveMQ server. 
• ACTIVEMQ_HOSTNAME: refers to the hostname of the ActiveMQ server. 
• APP_NAME: refers to the name of the application that we have to gather its data. 
• DATA_PATH: refers to the path where we will save the collected data in the docker container. 
• INFLUXDB_HOSTNAME: refers to the hostname of the InfluxDB server. 
• INFLUXDB_PORT: refers to the port of the InfluxDB server. 
• INFLUXDB_USERNAME: refers to the username that has to be used in order to connect to the InfluxDB 

server. 
• INFLUXDB_PASSWORD: refers to the password associated to the specified INFLUXDB_USERNAME in 

order to connect to the InfluxDBserver. 
• INFLUXDB_DBNAME: refers to the name of the database from which, we will collect the data. 

your_network refers to the network on which the other required services are running. 
 

Like the other forecasters, GluonTS forecaster depends on the following services: 

ActiveMQ is the event broker that we are using to communicate with the other subcomponents mainly the Prediction 
orchestrator. The library ‘amq-message-python-library' which was developed for MORPHEMIC Project proposal is 
used. 

Persistent storage is the service that manages the collection of the data related to the metrics that need to be forecasted. 

 

6.7.3 illustrative use 

The GluonTS forecaster was evaluated using different metrics provided by two datasets. In the following tables, we 
illustrate the results of the experiments made based on the Genome 12 and Genome 21 datasets respectively. MAE, 
MSE, MAPE, SMAPE were used as evaluation metrics for the following comparison. 

Table 28 - GluonTS forecaster performance on the Genome 12 dataset 

Metric mae mse mape smape 

ETPercentile 10.3 146.7 0.13  0.11 

NotFinishedOnTime 
Context 27796 772900714 0.46 0.59 

RemainingSimulation 
TimeMetric 34905 1220364518 0.63 0.92 

 
25GluonTs image in the MORPHEMIC GitLab repository: https://gitlab.ow2.org:4567/melodic/morphemic-
preprocessor/gluonmachines:morphemic-rc2.0 
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NotFinished 26740 715213418 0.44 0.56 

WillFinishTooSoon 
Context 21507 462699322 0.44 0.56 

NotFinishedOnTime 23555 555541258 0.39 0.48 

EstimatedRemaining 
TimeContext 6422 41845266 nan 1.31 

SimulationLeftNumber 515 270573 nan 1.24 

TotalCores 0.05 0.003 0.05 0.05 

MinimumCores 1.75 3.11 nan 2 

SimulationElapsedTime 29740 884800330 0.47 0.62 

MinimumCoresContext 2.43 5.9 nan 2 

 
Table 29 - GluonTS forecaster performance on the Genome 21 dataset 

Metric mae mse mape smape 

ETPercentile 3.53 20.2 0.047 0.047 

NotFinishedOnTime 
Context 24575 604281846 0.438 0.562 

RemainingSimulation 
TimeMetric 29137 849206050 0.59 0.839 

NotFinished 25013 625909921 0.44 0.57 

WillFinishTooSoon 
Context 13922 195126979 0.3 0.36 

NotFinishedOnTime 22099 488746979 0.39 0.49 

EstimatedRemaining 
TimeContext 8236 68916236 nan 1.19 

SimulationLeftNumber 372 142115 nan 1.12 

TotalCores 0.026 0.0008 0.026 0.027 

MinimumCores 1.31 1.75 nan 2 

SimulationElapsedTime 27522 757849489 0.48 0.64 

MinimumCoresContext 1.39 1.97 nan 2 
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6.8 Exponential Smoothing  
6.8.1 Overview 

Algorithms based on exponential smoothing have been long recognized for their usefulness, in time series predictions. 
Moreover, exponential smoothing is also provided by Amazon26, as a service which can help in workload prediction. 
Due to the appeal of such algorithms, we have elected to implement a forecaster which is based on the use of exponential 
smoothing. 

The Exponential smoothing forecaster consists of a wrapper around the Holt-Winters27 and ETS28 R libraries. The exact 
library which will be used by the predictor is a configuration option. It retrieves the monitoring metrics which should 
be predicted using the metrics_to_predict topic, as well as the start_forecasting.exponentialsmoothing topic. It 
communicates with the Persistent Storage to retrieve monitoring data for the metrics it should predict. When predictions 
are made, they are published in the intermediate_predictions.{metric_name} topic of the broker (where 
{metric_name} is the name of the metric). 

In the case of the Holt-Winters algorithm, the algorithm estimates i) a level component ii) a trend component and iii) a 
seasonality component. The level component tries to account for short-term workload fluctuations, the trend component 
tries to incorporate the influence of long-term workload trend, and the seasonality component is used to factor in 
workload variations due to seasonality. The addition of these three components forms the forecasted value. 

In the case of the ETS algorithm, a series of models are evaluated using Akaike's Information Criterion (corrected for 
small sample bias) in order to determine the most appropriate forecasting model. Each model has three components - 
Error, Trend and Seasonal. Error can be either additive or multiplicative. Trend can be additive, additive damped or not 
considered. Seasonality can be either additive, multiplicative or not considered. The expressivity of ETS is greater than 
Holt-Winters, and in fact Holt-Winters is one of the algorithms possible to be depicted using ETS. 

Τhe detailed equations which are used in Holt-Winters as well as more details on the Holt-Winters method and possible 
ETS models, we refer the reader to [18]. 

6.8.2 Implementation 

The internal architecture of the component appears in the following figure 16. 

 
26 https://docs.aws.amazon.com/forecast/latest/dg/aws-forecast-recipe-ets.html 
27 https://www.rdocumentation.org/packages/forecast/versions/8.15/topics/forecast.HoltWinters 
28 https://www.rdocumentation.org/packages/forecast/versions/8.15/topics/ets 
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Figure 10 - Internal architecture of the Exponential Smoothing Predictor 

The Exponential Smoothing Predictor is packaged as a Docker container which initializes a Python Controller 
responsible of coordinating the actions related to forecasting. The Predictor further includes a Dataset Maker 
subcomponent, a Prediction Scheduler subcomponent, an R forecaster subcomponent, and interfaces with the Python 
AMQP library. 

The core predictive functionality of the Exponential Smoothing predictor is implemented by an R script, the R forecaster 
subcomponent. The predictions which are generated are propagated by the Controller to the EMS for further processing 
(using functionality offered by the Python AMQP library). Moreover, the Controller estimates the appropriate time point 
at which a new prediction process should be initiated, and then spawns one OS-level process for each attribute to be 
predicted, in parallel. 

Regarding the communication between internal and external components, External communication 1 is performed using 
AMQP, and involves retrieving commands from the Prediction Orchestrator, and sending prediction events. External 
communication 2 is performed using REST and involves the acquisition of the dataset which will be used to generate 
predictions. Internal Communications 3-6 are performed using Python objects and methods.  

The current implementation of the forecaster is available in the MORPHEMIC GitLab repository.29  

When data is received from the Dataset Maker, to increase robustness, it is converted to obtain granularity at second-
level. Therefore, even if a prediction is requested at a time point which is not precisely aligned with the data, the 
component will produce a prediction. Empty or non-existent values are estimated using the na.approx function which 
is available in R. 

For the predictions created by the Exponential Smoothing forecaster to be useful, a prediction horizon greater than one 
second will be commonly required (to allow time for adaptation). As the Holt-Winters and ETS R predictor libraries 
estimate the best parameters by minimizing the MSE or maximizing the likelihood respectively (both based on the 
calculation of one-step ahead errors within the training dataset), it is necessary to resample the dataset in order to allow 
the method to estimate the best parameters assuming that predictions are made one-step ahead. We therefore include a 

 
29 Exponential Smoothing Forecaster in the MORPHEMIC GitLab repository: https://gitlab.ow2.org/melodic/morphemic-preprocessor/-
/tree/morphemic-rc2.0/morphemic-forecasting-exponentialsmoothing  
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relevant configuration option in the properties file of the component, to set the desired resampling period. Resampled 
values are obtained from observations inside time intervals with an arbitrary length (in seconds). 

Once all necessary data is retrieved, the data is split to training and test datasets, and a model is retrained. The amount 
of data which is relevant for a new prediction is specified in the configuration file. To improve efficiency, and take 
advantage of the presence of multiple CPUs, the implementation of the predictor, uses separate processes to calculate 
the prediction related to each attribute. 

If the performance of the predictor is not found to be satisfactory, then an exhaustive search mechanism can be used, 
with a custom granularity, to allow tailoring the alpha, beta and gamma (short, long term and seasonality) coefficients 
of the Holt-Winters exponential smoothing method. 

 

6.8.3  Illustrative use 

To use the forecasting functionality, assuming that R is installed and the Rscript command is available, the command 
which should be used appears below: 
Rscript  forecasting_real_workload.R    path_to_csv_file    metric     targeted_prediction_time 

Where forecasting_real_workload.R is the name of the R script which carries out the prediction, path_to_csv_file is 
the absolute filepath of the dataset, metric is the name of the metric to be forecasted and targeted_prediction_time is a 
Unix epoch timestamp which specifies the time point for which we wish to generate a prediction (in seconds). An 
example call would be the following: 
Rscript forecasting_real_workload.R /opt/data/set1.csv cpu_usage 1613167137 

Naturally, when predictions of multiple metrics are required, the prediction script will need to be called more than once; 
this process is automated by the Controller. 

The predictor was evaluated using a multitude of metrics in two distinctive datasets. The predictor was configured to 
use the Holt-Winters library for this comparison. Its performance appears in the following tables for the Genome 12 and 
Genome 18 dataset respectively:           
  

Table 30 - Exponential Smoothing Predictor performance on the Genome 12 dataset 

 mae mse mape smape 

EstimatedRemainingTimeContext 144.0979 36605.4458 inf 0.0993 

SimulationLeftNumber 8.1749 144.6138 inf 0.0746 

SimulationElapsedTime 150.5000 22650.2500 0.0026 0.0026 

NotFinishedOnTime 177.7620 36006.5151 0.0031 0.0031 

MinimumCoresContext 1.2591 1.6078 inf 2.0000 

NotFinished 177.7620 36006.5151 0.0031 0.0031 

WillFinishTooSoonContext 169.5359 33449.0581 0.0036 0.0036 

NotFinishedOnTimeContext 177.7620 36006.5151 0.0031 0.0031 

MinimumCores 1.2591 1.6078 inf 2.0000 
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ETPercentile 1.6108 7.1554 0.0200 0.0191 

RemainingSimulationTimeMetric 150.5000 22650.2500 0.0029 0.0029 

TotalCores 0.0000 0.0000 0.0000 0.0000 

 
Table 31 - Exponential Smoothing Predictor performance on the Genome 21 dataset 

 mae mse mape smape 

EstimatedRemainingTimeContext 240.1213 101404.8275 inf 0.0948 

SimulationLeftNumber 7.7859 132.7747 inf 0.0744 

SimulationElapsedTime 150.5000 22650.2500 0.0028 0.0028 

NotFinishedOnTime 265.4976 86695.0842 0.0049 0.0049 

MinimumCoresContext 1.1398 1.3288 inf 2.0000 

NotFinished 265.4976 86695.0842 0.0049 0.0049 

WillFinishTooSoonContext 257.5010 85386.4789 0.0058 0.0058 

NotFinishedOnTimeContext 265.4976 86695.0842 0.0049 0.0049 

MinimumCores 1.1398 1.3288 inf 2.0000 

ETPercentile 1.1722 3.4887 0.0157 0.0153 

RemainingSimulationTimeMetric 150.5000 22650.2500 0.0033 0.0033 

TotalCores 0.0000 0.0000 0.0000 0.0000 

 

6.9 Discussion/Evaluation 
The forecasting algorithms presented in this section cover a wide range of methods and approaches for time series 
forecasting. Starting from the widely used ARIMA/SARIMA models which are very popular in forecasting, through 
Exponential Smoothing and Prophet methods which are state-of-the-art non-deep learning time series forecasting 
models to advanced, deep learning algorithms (ES-Hybrid, N-Beats, TFT, GluonTS).   

To compare the performance of these algorithms two important for Genom application optimization metrics have been 
selected. The SimulationLeftNumber metric which defines the number of the simulations remaining to finish a given 
set of simulations. EstimatedRemainingTimeContext metric which defines the estimated remaining time to complete a 
given set of simulations. The forecasting of these values will allow for better optimization of cloud computing resources 
currently used. To compare the accuracy of forecasting the MAE indicator has been used. As all foresting methods have 
been used on the same datasets, the MAE value will give the most precise comparison of the results. The MAPE and 
SMAPE metrics have not been used due to numerical issues with calculation of these metrics for samples where target 
variable is zero.  The lower value of MAE means the forecasting methods are more accurate to predict future values of 
the abovementioned metrics. 
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On the genom12 dataset, the best results on individual metric level have been achieved by the Prophet method – see 
Table 31. As this dataset is smaller and has a lower variance for given metrics, the specialized statistical methods, which 
require fewer data to train, achieved better results compared to deep learning algorithms. 

On the genom18 dataset, which contains bigger volume of data, a specialized deep learning method N-Beats achieved 
the best performance on average and on individual metric level (along with TFT method) – see Table 32. This shows 
that for this dataset, with the higher variance of the metrics, deep learning methods are the best choice.  

The final evaluation of the forecasting methods, based on multiple examples and use case application will be presented 
in deliverable D2.4 “Proactive Utility - algorithms and evaluation“ and a final conclusion about the performance of the 
forecasting methods will be drawn there. 
Table 32 - Comparison of forecasting methods on Genom12 dataset for the SimulationLeftNumber and EstimatedRemainingTimeContext metrics 

Forecasting 
method 

SimulationLeftNumber 
- MAE 

EstimatedRemaining 

TimeContext - MAE 

Average MAE value for 
SimulationLeftNumber and  

EstimatedRemainingTimeCo
ntext 

ES-Hybrid 50.3716 564.3234 307.3475 

N-Beats 4.3672 59.9467 32.1570 

TFT 4.6790 84.5214 44.6002 

Prophet 3.78 165.7 84.7400 

SARIMA 6.1957 77.6851 41.9404 

GluonTS 515 6422 3468,5 

Exponential 
Smoothing 

8.1749 144.0979 
76.1364 

 
Table 33 - Comparison of forecasting methods on Genom18 dataset for the SimulationLeftNumber and EstimatedRemainingTimeContext metrics 

Forecasting 
method 

SimulationLeftNumber 
- MAE 

EstimatedRemainin
g 

TimeContext - MAE 

 

Average SMAPE value for 
SimulationLeftNumber and  

EstimatedRemainingTimeCont
ext 

ES-Hybrid 58.6324 1298.7369 678,6847 

N-Beats 4.8332 103.8079 54,3206 

TFT 5.9925 187.2061 96,5993 

Prophet 27.3 304 165,6500 

SARIMA 6.6988 147.9898 77,3443 

GluonTS 372 8236 4304,0000 
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Exponential 
Smoothing 

7.7859 240.1213 
123,9536 

 

7 Prediction Orchestration and Adaptation Triggering 

7.1 Prediction Orchestrator  
In section 5, different forecasting algorithms were described, each running in a different docker container. One of the 
goals of Proactive adaptation approach is to make use of as many forecasters as possible, meaning that the more 
forecasters are available, the better predictions of metrics we would get. The component that is responsible for 
orchestrating those forecasters and gathering produced data is called Prediction Orchestrator. Its main features are: 

• Sending information to the forecasters which metrics they should predict and at what time intervals 
• Gathering all of the predictions created by the forecasters 
• Orchestrating received predictions: verifying if they concern valid timestamps in the future and storing them 
• Based on those predictions, sophisticated ensembling methods would be launched to produced one, better 

prediction for each timestamp, for each metric 
• Resulted predictions are further sent to the SLO Violation Detector 
• If one of the forecasters would send updated predictions, Prediction Orchestrator would produce a new, updated 

merged prediction 

7.1.1 Approach and Implementation details  

Multiple, distributed forecasting containers can have different inner clocks. As consequence the event-driven approach 
of organizing the predictions has been chosen. This approach also allows to receive messages not in order. To 
communicate with the forecasters and SLO Violation Detector, AMQP messages are used.  
Prediction Orchestrator is started with following parameters. 

Table 34 – Prediction Orchestrator’s Parameters 

Parameter Description Indicative value 

forecasting_configur
ation.initial_predic
tion_horizon 

This property indicates what is the time 
difference (seconds) between following 
‘predictionTime’ fields, both inside the 
forecasters and the PO. 
Depending on the forecaster it may also 
mean how often the Forecaster would 
publish predictions to the PO. 

30 

forecasting_configur
ation.initial_forwar
d_prediction_numbe 

This property indicates how many forward 
predictions the forecaster should send at 
the moment of publishing predictions 

8 

forecasting_configur
ation.starting_forec
asting_delay 

This property indicates what is the 
‘epochStart’ and what ‘predictionTime’ 
should have the first message send by the 
forecaster. It also explains the time 
before the forecasters start publishing. 

EpochStart = currentTime + 
starting_forecasting_delay 

200 

pooling.poolingStrat
egy 

This property indicates method for 
checking how many forecasters' data is 

STATIC_FORECASTERS_C
OUNT_NEEDED 
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needed to be able to ensemble predictions 
and publish them forward 

pooling.threshold This value indicates how many forecasters 
are needed to create an ensembled 
prediction 

2 

startingMethodsList List of connected forecasters that PO 
expects to be working. PO would not 
communicate with the forecasters not on 
that list  
 

es_hybrid,prophet,tf
t,nbeats,arima,tsetl
in_machines,exponent
ial_smoothing,lstm,g

luon_machines 

At the beginning of working, Prediction Orchestrator receives a ‘metrics to predict’ list. Then it sends a message to each 
of the forecasters to start working. The message is sent on topic: ‘startt_forecasting.[forecaster_name]’ and contains 
data needed to start predicting. It contains parameters that could be seen above: 

 
epochStart,  initial_forward_prediction_number and initial_prediction_horizon. 

All components in the system assume that every message containing prediction would have field: ‘predictionTime’ that 
needs to follow the pattern: 

predictionTime = epochStart + k * initial_prediction_horizon; where k is integer 
 

This field is crucial to determine which predictions concern which timestamp in the future. 
 
From now on, Prediction Orchestrator expects to receive predictions from the forecasters on topics: 
intermediate_prediction.[forecaster_name].[metricName] 

Prediction Orchestrator creates a different Listener/Thread that is responsible for handling each of those topics. 

When received, they are validated and stored in the ‘PredictionRegistry’ which has similar work as a circular buffer. 
For each topic, ‘initial_forward_prediction_number’ of predictions are stored.  

Each message is an event that can cause prediction ensembling. For the timestamp, Prediction Orchestrator verifies if 
there are enough predictions to ensemble (based on ‘pooling’ properties). If so, ensembling methods are launched to 
produce ensembled predictions (using data from as many forecasters as already has been received). If method succeeds, 
an ensembled prediction for a specific predictionTime (concerning one metric) has been created. If such ensembled 
values are created for each of the metric, then they are all sent to the SLO violation detector via topic: 
prediction.[topic_name] 

Prediction Orchestrator is implemented as a spring boot application (v 2.4.1) with Java 11 language30. For the 
communication via ActiveMQ, the ‘amq-message-java-library' (created for MORPHEMIC project) is used. 

 

7.1.2 Model Ensembling  

7.1.2.1 Introduction 

The goal of ensemble methods is to combine the predictions of several base estimators built with a given learning 
algorithm in order to improve generalizability / robustness over a single estimator. Ensembling methods for one 
exampled dataset were tested. 

Dataset  

 
30 Prediction Orchestrator in the MORPHEMIC GitLab repository: https://gitlab.ow2.org/melodic/morphemic-preprocessor/-/tree/morphemic-
rc2.0/prediction_orchestrator  
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Predictions on CPU usage - predictions from forecasters: N-Beats, TFT link to data31.   

Methods 

Several methods are being evaluated as mentioned below: 

• Classical: 
-  Naive mean 
-  Mean over the best n methods on k last timesteps 
-  Predictions weights found with linear programming 
-  Mean over the best subset (from all of possible subsets) 

• Advanced: 
- FCNN (Fully Connected Neural Networks) 
- CNN (Convolutional Neural Network 1D) [16] + residual connections 
- CNN  (Convolutional Neural Network 1D) + residual connections + self-attention 

7.1.2.2 Experiments 

Below we provide a short overview of the current experiments: 

• Classical methods: The train/val/test  (ratio 7:2:1) were constructed. Naive mean was directly evaluated on test 
split. For other classical methods (train + val) split were used for choosing the best parameters (best subset for 
mean over the best subset, k and n for mean over the best n methods on k last timesteps, forecasters weights for 
linear programming) and then evaluated on test set. 

• Advanced methods: Neural networks were trained on training set, the best models were chosen based on 
validation test, final prediction was made on test set. 

With respect to the latter methods the Neural network input involved: 

• Historical real values (if available at the moment) + historical errors (if available at the moment) + historical 
predictions + current prediction 

With respect to Neural network output: 

• Weights (summing up to 1, each positive) 

Below, we provide a neural network input example (which consists of 2 parts: Past and future). 
  

 
31 Dataset used for Model Ensembling in the MORPHEMIC GitLab repository: https://gitlab.ow2.org/melodic/morphemic-preprocessor/-
/tree/tft_nbeats/deployment/ensembler-data  
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Table 35 - Neural network input part: Past 

 pred_ 
error_1 

pred_ 
error_2 

pred_ 
error_3 

pred_ 
error_4 

pred_ 
error_5 

pred_ 
error_5 is_past real value 

0 10.44 10.60 0 6.23 3.14 8.88 1 26.0 

1 3.67 8.94 0 0.17 -3.92 7.54 1 29.0 

2 1.25 12.33 0 -0.07 2.93 11.35 1 26.0 

3 5.12 20.08 0 2.20 25.13 19.62 1 18.0 

4 -1.50 47.69 0 -3.49 53.17 49.87 1 18.0 

 

Table 36 - Neural network input part: Future 

 pred_0 pred_1 pred_2 pred_3 pred_4 pred_5 is_past real value 

5 0 62.05 15.53 13.53 64.79 63.64 0 0.0 

6 0 56.55 15.48 14.34 64.17 56.96 0 0.0 

7 0 51.54 16.00 15.32 65.22 50.66 0 0.0 

In the following table we provide the experiment results with respect to the CPU usage predicted metric. 
Table 37 - CPU usage predicted metric 

 mae mse smape mape 

Best single forecaster 16.56 631.86 0.31 0.68 

Naive mean 19.94 711.26 0.36 0.83 

Mean over the best subset 
(from all of possible 

subsets) 
16.18 616.38 0.29 0.68 

Mean over the best n 
methods on k last 

timestep 
16.09 560.66 0.30 0.67 

Predictions weights found 
with linear programming 16.07 596.51 0.29 0.69 

The best neural network 
(CNN (Convolutional 
Neural Network 1D) + 
residual connections) 

12.40 402.00 0.23 0.54 
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Figure 11 - Experiments results 

Simulation of real time ensembling results, the light green highlighted rectangles represent time periods were given 
method gave the most accurate predictions. In the table metrics are calculated. The best method for given metric is green 
coloured. 

As it has been shown, this approach gives promising results and therefore is being implemented as a part of Prediction 
Orchestrator. The final results of evaluation will be provided in D2.4" 

 

7.2 Severity-based SLO Violation Detector  
The SLO Violation Detector is the component which is responsible to trigger the proactive adaptation of the 
MORPHEMIC platform. It uses predicted data from the Prediction Orchestrator, and real-time data to calculate whether 
there is a need for an adaptation. To do so, it uses Severity, a multi-factor statistical metric. Severity is calculated 
whenever an adaptation opportunity is detected by the component, a situation which the platform has the time to react 
to. Based on the Severity value, which is determined for the current situation, the component sends a message to the 
Metasolver specifying the probability of a new adaptation occurring in an upcoming time period. 

7.2.1 Component Architecture 

Similar to other components comprising the Forecasting Module, we have adopted for the SLO Violation Detector an 
event-driven architecture. All input and output are received and sent using AMQP messages. 

The internal architecture of the SLO Violation Detector appears below: 
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Figure 12 - SLO Violation Detector 

The component first receives the SLO constraints which should be respected for the application which is currently 
deployed in the MORPHEMIC platform. Based on the monitoring attributes which are mentioned in this input, the 
component subscribes to the relevant AMQP topics for predicted and real-time metrics. When real-time or predicted 
metrics are received, they are persisted in suitable data structures. Messages containing information related to predicted 
metrics can also trigger a proactive adaptation, if sufficient time is available for the platform to perform an adaptation 
and if the data contained indicates that this is necessary. The Severity Calculator submodule undertakes the calculation 
of the Severity for each of the SLO constraints provided to the component. If any of these constraints is violated, a 
suitable message is transmitted to the ActiveMQ Broker. 

The functionality of the component can be tuned using a configuration file. The parameters which can be tuned to run 
the component and use its stable functionality appear in Table 37.  

Table 38 - Stable operation configuration parameters of the SLO Violation Detector 

Parameter Description Indicative value 

metrics_bounds A string value which is a csv list of monitoring metrics, and the 
respective upper and lower bounds which are known for them 
beforehand. The list contains triplets which are comma separated, 
while elements of a triplet are separated with semicolons. Each 
triplet contains the name of the metric, its lowest bound and its 
highest bound (or the word ‘unbounded’ if these are not known. 
If a monitoring metric is not registered here, it will be assumed 
that it can be assigned any real value from 0 (the lowest bound) to 
100 (the highest bound) 

avgResponseTime;unbo
unded;unbounded,custo
m2;0;3 

slo_rules_topic A string value indicating the name of the topic which will be used 
to send messages containing the SLOs which should be respected 
by the application. 

metrics.metric_list 
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broker_ip_url A string value indicating the url which should be used to connect 
to the AMQP broker to send and receive messages. 

tcp://localhost:61616?w
ireFormat.maxInactivity
Duration=0 

broker_username A string value, which is the username to access the AMQP broker User1 

broker_password A string value, which is the password to access the AMQP broker userpassword 

slo_violation_deter
mination_method 

A string value, indicating the method which is used to determine 
whether an SLO violation has occurred. 

all-metrics 

time_horizon_secon
ds 

An integer value indicating the  minimum time interval between 
two successive reconfigurations that the platform can support  

900 

maximum_acceptab
le_forward_predicti
ons 

An integer value indicating the maximum number of forward 
predictions for which the component will keep data 

30 

 

7.2.2 Component input 

The triggering input of the SLO Violation Detector is a JSON message which informs the component about the SLOs 
which should be respected. The format of these SLOs is the following: 

𝑆𝐿𝑂 ← {𝑀𝑒𝑡𝑟𝑖𝑐}{𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟}{𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑} 

Metric: Any monitoring attribute which can be observed using the EMS can be used in the formulation of an SLO 

Operator: Either greater than, greater than or equal, less than or less than or equal. 

Threshold: We assume that metric values used in the description of SLOs are real numbers, so any real number which 
can be handled by Java 9 can be used. 

Multiple SLOs can be joined using an 'AND' or 'OR'-separated syntax.  

Examples of AND and OR separated SLO's appear in Listing 13 and 15 below: 
Listing 13 - A simple SLO rule 

{  
  "name": "_",  
  "operator":"OR",  
  "constraints":[  
    {  
      "name":"cpu_usage_too_high",  
   "metric": "cpu_usage",  
      "operator":">",  
      "threshold": 80.0  
    }  
  ]  
} 
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Listing 14 - An example of a complex SLO rule 

{   
  "name": "_",   
  "operator":"OR",   
  "constraints":[   
    {   
      
"name":"cpu_and_memory_or_swap_too_high",   
      "operator":"AND",   
      "constraints": [   
        {   
          "name":"cpu_usage_high",   
          "metric":"cpu_usage",   
          "operator":">",   
          "threshold":80.0   
        },   
        {   
          "name": "memory_or_swap_usage_high",   
          "operator": "OR",   
     "constraints": [   
            {   
              "name":"memory_usage_high",   
              "metric":"ram_usage",   
              "operator":">",   
      "threshold":70.0   
            },   
            {   
       "name": "disk_usage_high",   
              "metric":"swap_usage",   
              "operator":">",   
              "threshold":50.0   
            }   
          ]   
        }   
      ]   
    }   
  ]   
} 

 

The simple SLO illustrated in Listing 13 states that the “cpu_usage” monitoring metric should stay ideally below 80 
(percent), otherwise an SLO violation should be triggered. On the other hand, the SLO in Listing 14 is more complex 
and involves the use of three monitoring metrics, “cpu_usage”, “free_ram” and “swap_usage”, which should be below 
70 and 50 (percent) respectively. The format illustrated in Listing 14 has been devised to allow nested AND-based or 
OR-based SLOs to be defined. The complex SLO rule in Listing 14 states that if (cpu_usage>80 AND (ram_usage>70 
OR swap_usage> 50)) then an SLO violation should be triggered. 

Apart from the non-periodical triggering input which configures its operation, the SLO Violation Detector also receives 
periodically predicted and actual metric values, from the Prediction Orchestrator and the Event Management System 
respectively. These values are the operands in the calculation of Severity and indicate the need to start an adaptation. 
Events containing the predicted values are described in Listing 2, while events containing real-time values are described 
in Listing 1. 
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When predicted metric values arrive, they are inspected to determine if the predictionTime they refer to is at least 
time_horizon_seconds away from the current time (one predction interval). Predictions should also not be too far into 
the future (more than maximum_acceptable_forward_predictions prediction intervals ahead). The values for 
time_horizon_seconds and maximum_acceptable_forward_predictions are configuration-time parameters of the 
component - especially  time_horizon_seconds reflects the agility of the MORPHEMIC platform, its readiness to provide 
an updated topology. 

 

7.2.3 Severity and Estimation of reconfiguration need 

Whenever a message containing predicted monitoring attribute values over the thresholds described in an SLO is 
received, it is possible that a platform reconfiguration is needed. Choosing to reconfigure the platform at all times may 
lead to application instability, while choosing to reconfigure the application too rarely may lead to degraded application 
performance. To assist this decision, we assess the ‘Severity’ of the possible violation of the thresholds of the attributes 
used in the SLO, which quantifies its rough magnitude [19]. The concept of Severity is used to calculate two distinct 
adaptation indicators, which also correspond to relevant operational modes for the SLO Violation Detector. 

In the ‘all-metrics’ mode, three meta-metrics are used; the confidence of the prediction estimate (PrConf), the absolute 
difference from the threshold (Delta) and the (sliding) rate of change of the particular attribute, ROC. To calculate 
Severity, we also use the sign of the Delta and ROC meta-metrics (either -1 or +1). It is reminded that higher values of 
Severity indicate that more pronounced changes to the application topology should be made (i.e., more VMs should be 
added/removed). We assume that the importance of each meta-metric is the same, therefore we assign the same weight 
to all meta-metrics. The calculation of normalized ‘all-metrics’ Severity for a PrConf, Delta and ROC triplet is illustrated 
in Equation 1. 

𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦 =
8𝑃𝑟𝐶𝑜𝑛𝑓! + 𝐷𝑒𝑙𝑡𝑎𝑆𝑖𝑔𝑛 ⋅ 𝐷𝑒𝑙𝑡𝑎! + 𝑅𝑂𝐶𝑆𝑖𝑔𝑛 ⋅ 𝑅𝑂𝐶!

√3
 

Equation 1 - Calculation of ‘all-metrics’ Severity for a simple SLO 

A careful observation of Equation 1 allows us to understand that depending on the DeltaSign and ROCSign values, and 
the meta-metric values, there may be situations in which the sum under the square root in the numerator is negative. In 
these cases, Severity cannot be defined. 

In the ‘prconf-delta’ mode, only two of the three meta-metrics introduced above are used – PrConf and Delta – using 
the same definitions as in the all-metrics technique. This second mode is made available as an alternative allowing not 
to use the observed value twice as is done in the ‘all-metrics’ technique (the observed value there is used by the Delta 
and ROC metrics). While the concept of ‘Severity’ is used only when SLOs for multiple attributes are defined, yet we 
use this name to indicate the need for an adaptation in the simple case where only one SLO is involved as well. The 
calculation of the normalized ‘prconf-delta’ ‘Severity’ in the simplest case of one SLO appears in Equation 2 

 

𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦 = 𝑃𝑟𝐶𝑜𝑛𝑓 ⋅ 𝐷𝑒𝑙𝑡𝑎 
Equation 2 - Calculation of prconf-delta ‘Severity’ for a simple SLO 

The normalized values for each meta-metric which are used in Equation 1 and Equation 2, are derived as described in 
Section 7.2.4.  

7.2.4 Meta-metric calculation 

7.2.4.1 Meta-metric value definitions 

As illustrated in Equation 1, to find the Severity for a simple SLO there are three meta-metrics which first need to be 
calculated, PrConf, Delta and ROC. To calculate each of these metrics, we rely on the observations which have been 
made for a particular monitoring metric, and the predictions for its future value. 

To calculate PrConf, we need to obtain the probability indicating the accuracy of a prediction, and the confidence 
interval width. The probability can be readily retrieved from the relevant field in prediction messages (see Listing 2) 
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and is always positive. To obtain the non-normalized value for PrConf, we multiply this with the normalized confidence 
interval width as shown in Equation 3: 

𝑃𝑟𝐶𝑜𝑛𝑓 = 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ⋅ (1 − 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑊𝑖𝑑𝑡ℎ) 
Equation 3 - Calculation of PrConf meta-metric 

where the definition of NormalizedConfidenceIntervalWidth appears in Equation 4 (assuming that the minimum and 
maximum Monitoring Attribute values differ): 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑊𝑖𝑑𝑡ℎ =
𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑊𝑖𝑑𝑡ℎ

𝑀𝑎𝑥𝑖𝑚𝑢𝑚𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑉𝑎𝑙𝑢𝑒 −𝑀𝑖𝑛𝑖𝑚𝑢𝑚𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑉𝑎𝑙𝑢𝑒
 

Equation 4 - Calculation of normalized confidence interval width 

 

To calculate the value of non-normalized ROC Equation 5 is used, with the exception of edge cases in which the real-
time metric value is zero: 

𝑅𝑂𝐶 =
𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑉𝑎𝑙𝑢𝑒 − 𝑅𝑒𝑎𝑙𝑡𝑖𝑚𝑒𝑉𝑎𝑙𝑢𝑒

𝑅𝑒𝑎𝑙𝑡𝑖𝑚𝑒𝑉𝑎𝑙𝑢𝑒
 

Equation 5- Calculation of non-normalized ROC 

To obtain the normalized percentage value for ROC, we set an upper limit of 100% to positive ROC values and lower 
limit of -100% for negative ROC values. Although the choice of the limit value is arbitrary, since the metric is 
normalized it is necessary to select appropriate limits which will allow more common, smaller ROC values to be 
considered, and not only the greatest ROC values which have been observed. Positive values of ROC result in ROCSign 
being +1, and negative values of ROC result in ROCSign being -1.  

For example, if we consider that the normalized value of a metric jumps from 1 (realtime value) to 100 (predicted value), 
using Equation 5 the estimated non-normalized ROC value is 9900%. By contrast, a change of a metric value from 50 
to 75, indicates a non-normalized ROC value of 50%. Using linear normalization, if the 9900% ROC value is assigned 
a normalized ROC value of 100% (for the purposes of this example), a non-normalized value of 50% would be assigned 
a value of ~0.51%. Having low ROC values in order to fully handle the (comparatively rare) highest ROC values 
significantly reduces the contribution of the ROC meta-metric in the calculation of Severity. On the other hand, using 
our normalization method, in the first case the non-normalized ROC value of 9900% is assigned a value of 100%, and 
the non-normalized ROC value of 50% is again normalized to a value of 50%. 

The value of non-normalized Delta is calculated as shown in Equation 6 and Equation 7 for greater-than and less-than 
SLO rules respectively (with the exception of edge cases in which the maximum metric value is under the threshold 
value in a greater than rule, or the minimum metric value is over the threshold value in a less than rule): 

𝐷𝑒𝑙𝑡𝑎 =
𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑉𝑎𝑙𝑢𝑒 − 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑉𝑎𝑙𝑢𝑒
𝑀𝑎𝑥𝑖𝑚𝑢𝑚𝑉𝑎𝑙𝑢𝑒 − 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑉𝑎𝑙𝑢𝑒

 

Equation 6 - Calculation of non-normalized Delta meta-metric in ‘greater-than’ SLO rules 

𝐷𝑒𝑙𝑡𝑎 =
𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑉𝑎𝑙𝑢𝑒 − 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑉𝑎𝑙𝑢𝑒
𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑉𝑎𝑙𝑢𝑒 −𝑀𝑖𝑛𝑖𝑚𝑢𝑚𝑉𝑎𝑙𝑢𝑒

 

Equation 7 - Calculation of non-normalized Delta meta-metric in 'less-than' SLO rules 

Similar to ROCSign, if the value of Delta is positive DeltaSign is +1, otherwise DeltaSign is -1. 

Once the values for the PrConf, ROC and Delta meta-metrics are known, Severity can be calculated for the particular 
SLO. 
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7.2.4.2 Full Example of Severity calculation on a simple SLO 

To illustrate the calculation of Severity, we will use the simple example of Listing 13 presented above. For the cpu_usage 
metric, the maximum metric value is 100% and the minimum metric value is 0%. Assuming that the realtime value of 
the metric is 50%, and the predicted value is 90%, with a prediction probability of 95% and a confidence interval of 
10%, we can calculate the following meta-metrics: 

𝑃𝑟𝐶𝑜𝑛𝑓 = 0.95	 ⋅ (1 −
0.10
1 − 0

) = 0.855	 

𝑅𝑂𝐶 =
0.9 − 0.5
0.5

= 0.8 

𝐷𝑒𝑙𝑡𝑎 =
0.9 − 0.8
1 − 0.8

= 0.5 

Therefore, the all-metrics Severity for this simple SLO is calculated as follows: 

𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦"##$%&'()*+ =
√0.855! + 0.8! + 0.5!

√3
≅ 0.735 

The prconf-delta Severity for this simple SLO is calculated as follows: 

𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦,(*-./$0&#'" = 0.855 ⋅ 0.5 ≅ 0.473 

 

7.2.4.3 Full Example of Severity calculation on a complex SLO 

When more complex SLO expressions similar to the one expressed in Listing 14 need to be evaluated, it is necessary to 
aggregate the values of individual SLO expressions. The mode of the aggregation is different for each Severity 
calculation mode. 

In the case of the all-metrics Severity calculation mode, to aggregate AND-separated SLOs we calculate the average of 
the Severity values of individual SLOs as shown in Equation 8.  

𝑂𝑣𝑒𝑟𝑎𝑙𝑙𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦 =
𝑠𝑙𝑜_1_𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦	 + 𝑠𝑙𝑜_2_𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦+	. . .		+𝑠𝑙𝑜_𝑛_𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦

𝑛
 

Equation 8 - Calculation of overall Severity value for a complex SLO, using the all-metrics calculation mode 

To aggregate OR-separated SLOs, we calculate the maximum of the Severity values of individual SLOs. 

To illustrate, consider the example complex SLO presented in  
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Listing 14, triggered if (cpu_usage>80 AND (ram_usage>70 OR swap_usage> 50)). Individual Severity values for the 
three SLOs (cpu_usage >80, ram_usage>70, swap_usage>50) are calculated as discussed in Section 7.2.3. Assuming 
that the Severity values for the CPU usage, RAM usage and Swap usage are found to be 0.75, 0.8 and 0.95 respectively, 
the overall Severity value of this complex SLO would be evaluated as shown in Equation 9: 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒	(0.75,max(0.8,0.95)) =
0.75 + 0.95

2
= 0.85 

Equation 9 - Calculation of overall Severity Value for an example complex SLO, using the all-metrics calculation mode 

In the case of the prconf-delta Severity calculation mode, to aggregate AND-separated SLOs we use the definition of 
Severity, applied onto Severity values of individual SLOs using: 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦 =
8𝑠𝑙𝑜_1_𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦! 	+ 𝑠𝑙𝑜_2_𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦!+	. . .		+𝑠𝑙𝑜_𝑛_𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦!

√𝑛
 

Equation 10 - Calculation of overall Severity value for a complex SLO, using the prconf-delta calculation mode 

To aggregate OR-separated SLOs, we calculate the maximum of the Severity values of individual SLOs as in the all-
metrics mode. Assuming the values used in the above example, the overall Severity value of the complex SLO would 
be evaluated as shown in Equation 11: 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦 =
√0.75! + 0.8! + 0.95!

√3
≅ 0.80 

Equation 11 - Calculation of overall Severity value for an example complex SLO, using the prconf-delta calculation mode 

 

7.2.5 Component output 

Having calculated the severity, the component can provide an estimate on the need for a reconfiguration of the 
application. In order not too trigger the reconfiguration of the platform too often, we opt to only send a reconfiguration 
message when the value of Severity is over the median Severity value (mSV). To calculate mSV, we calculated the 
Severity values which correspond to all acceptable meta-metric integer values (see set S definition in Equation 12).  

𝑆: (𝑠 ∈ 𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦(𝑟𝑜𝑐, 𝑝𝑟𝑐𝑜𝑛𝑓, 𝑑𝑒𝑙𝑡𝑎)	|	𝑟𝑜𝑐, 𝑝𝑟𝑐𝑜𝑛𝑓, 𝑑𝑒𝑙𝑡𝑎 ∈ (ℤ	 ∩	 [−100,100] × [0,100] × [−100,100]	)) 
Equation 12 -  Valid integer Severity values 

The ranges for the percentage values of the roc and prconf meta-metric were chosen  as shown in Equation 12 as they 
reflect the maximum and minimum values for the particular metric (by definition). Moreover, the range for the 
precentage values of the delta meta-metric was chosen to allow taking into account predictions with a high rate of change 
and high PrConf value while still having a value which is under an SLO threshold, or predictions with a high negative 
rate of change and high PrConf value, having a value which is over an SLO threshold. While we allowed negative delta 
values, according to Equation 6, Equation 7 and Equation 12 we do not consider predictions more than (MaxValue-
ThresholdValue) or less than (ThresholdValue-MinValue) from the threshold. 

Then we calculate the Severity for each element 𝑠 ∈ 𝑆. The results were normalized, as they were calculated over integer 
percentage values – this choice was made to allow for precision while still maintaining a reasonable computing time. 
Based on the normalized values, mSV – equal to the normalized median value of set S – was found to be 0.4 for the all-
metrics computation mode and 0.0652 for the prconf-delta computation mode. Therefore, when a Severity value is 
calculated to surpass mSV, we assign a reconfiguration probability as indicated in Equation 13.  

𝑅𝑒𝑐𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 0.5 +
𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦𝑉𝑎𝑙𝑢𝑒 −𝑚𝑆𝑉

2 ∗ (1 −𝑚𝑆𝑉)
 

Equation 13 -  Platform reconfiguration probability 

The reconfiguration probability value, which is calculated, is sent using the event specification in Listing 15. 
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{ 
    "severity":0.9064, 
    "predictionTime":1626181860, 
    "probability":0.92246521 
} 

Listing 15 - The SLO Violation Detector output event 

The value of the “severity” field is equal to the value which is calculated using Equation 1,Equation 2,Equation 8 and 
Equation 10. The value of the “probability” field corresponds to the value which is calculated using Equation 13. Finally, 
the value of the “predictionTime” field corresponds to the time point for which all calculations were made by the 
component. 

 

8 Metasolver  

The Metasolver is the Upperware component responsible for coordinating the solving process, which generates the 
multi-cloud application deployments. The solving process involves several steps like, selecting the appropriate solver(s), 
validating the produced solution, and also triggering the application reconfiguration (i.e., re-running the solving process) 
when an SLO violation is detected by the monitoring system. 

The MELODIC project was focused on responding to SLO violations when they actually occur, by reconfiguring a 
multi-cloud application, hence MELODIC implements a reactive approach. Morphemic, on the other hand, goes further 
by introducing the capability to proactively respond to situations that could result in SLO violations. In other words, 
MORPHEMIC supports both reactive and proactive handling of SLO violations. 

In the context of the MORPHEMIC project, the scope of Metasolver is extended in order to assist the forecasting 
mechanism in generating predictions about forthcoming SLO violations. Based on them, Metasolver can also trigger 
application reconfiguration in order to prevent the (predicted) SLO violation from actually occurring. In this section the 
required updates for supporting the forecasting mechanism are reported. These updates target at two main directions: 

• Update of CP model with predicted data. 
• Trigger application reconfiguration on the basis of a predicted SLO violation. 

8.1 CP model update with predicted data 
CP model stores information that MORPHEMIC solvers use as input in order to compute a solution to the CP problem 
(also captured in CP model). The solution represents a new application configuration / deployment. This information 
can either be actual measurements and values originating from the monitoring system (EMS), or they can be predicted 
values the forecasting mechanism generates. This way solvers can be used to compute solutions (i.e., application 
deployments) that fit either to the current situation or to a predicted state of the application. 

Every time an application reconfiguration is triggered, Metasolver must update CP model with the corresponding 
information. 

• If a SLO violation actually occurred, then the new application configuration must be computed based on the 
(actual) information collected by monitoring system (EMS) at the time of SLO violation. 

• If forecasting mechanism predicts that an SLO violation will shortly occur, then a new application 
configuration must be computed based on the information used by forecasting mechanism. This information 
includes predicted values and are also generated by forecasting mechanism.  

In other words, CP model must be updated with the context (i.e., information) led/will lead to an SLO violation. For this 
reason, Metasolver needs to receive both the actual as well as the predicted values for each variable included in CP 
model. To this end Metasolver subscribes to all event topics where events pertaining to the needed information are 
published. By convention the names of the topics that convey predicted values are prefixed with "prediction." 
indication. Topics that convey actual values use no special indication. For instance, AverageCpuLoad would be a 
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topic for actual CPU load values, whereas prediction.AverageCpuLoad would be used for predicted CPU load 
values. 

The default behaviour of Metasolver can be modified by changing the following settings in configuration file.  
Table 39 – Metasolver’s Configuration Settings 

Configuration Setting Allowed/Default values Description 
predictionMonitoringEnabled true, false 

 Default: true 
Flag for enabling or disabling the monitoring of 
predicted values 

predictionTopicFormatter A valid ActiveMQ 
topic name pattern 

Default: 
prediction.%s 

Specifies the pattern for creating the predicted 
values topic names, based on their actual values 
counterparts. The %s is replaced with the actual 
values topic name 

predictionTopicPattern A valid regular 
expression 
Default: 

^prediction\.(.+)$ 

Regular expression for extracting the actual 
values topic name from its predicted values 
counterpart. The expression part between (..) 
captures the actual values topic name. 

PredictionRegistryCleanup 
Rate 

Any long value 
Default: -1L 

Specifies the time-to-live of the contents of 
predicted values cache. After that period the 
predicted values cache is purged. 

PredictionRegistryCleanup 
AfterScaleEvent 

true, false 
 Default: true 

Controls whether the predicted values cache 
will be purged after triggering an application 
reconfiguration. 

 Metasolver is automatically configured by EMS Translator with the topics it needs to monitor. Next, Metasolver 
subscribes to each (configured) topic as well to its predicted values counterpart and starts caching the values received. 
Specifically, it caches actual and predicted values in two distinct caches. Upon application reconfiguration it will update 
CP model with the values of the appropriate cache. Metasolver can be configured to periodically persist the contents of 
the actual values cache into CP model. The default cache persistence period is 30 seconds, but it can be changed in 
Metasolver configuration file. The corresponding settings are presented in the table below. 

Table 40 – Metasolver’s Configuration Settings regarding CP Model updates 

Configuration Setting Allowed/Default 
values 

Description 

cpModelUpdateEnabled true, false 
Default: true 

Flag for enabling or disabling the periodic actual values 
cache persistence to CP model 

cpModelUpdateInterval any long positive 
value (>0) 

Default: 30000L 

Specifies the actual values persistence period in 
milliseconds 

8.2 Application reconfiguration due to predicted SLO violation 
The second set of Metasolver updates concern the triggering of application reconfiguration that can be the result of 
either an actual SLO violation or a predicted one. The forecasting mechanism, apart from the predicted CP model 
variable values, it also generates predictions of anticipated SLO violation (in the near future). These predictions are 
published as SLO violation events in a preconfigured topic; by default, this topic is 
prediction.slo_severity_value (see also section 3.3). 

Metasolver automatically subscribes to the topics where forecasting mechanism publishes predicted SLO violation 
events, and upon receiving one with probability higher than a preconfigured threshold (default threshold is 0.5) it starts 
a new application reconfiguration. As mentioned in the previous section, before triggering the reconfiguration 
Metasolver will first store the predicted values from the corresponding cache into CP model, and only then it will signal 
Upperware control plane to execute the application reconfiguration. SLO violation event with probability lower than 
threshold are ignored. 
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Table 41 – Metasolver’s Configuration Settings regarding reconfiguration threshold 

Configuration Setting Allowed/Default values Description 
pubsub.commonTopics[0].name A valid ActiveMQ 

topic name 
Default: prediction. 
slo_severity_value 

The name of topic where predicted SLO 
events are published 

reconfigurationProbability 
 Threshold 

Double value in range 
0..1 

Default: 0.5 

The probability threshold for a predicted 
SLO violation event to trigger a new 
application reconfiguration 

  

In order to prevent two or more reconfiguration process instances from occurring simultaneously, Metasolver has been 
extended to ignore SLO violation events (either actual or predicted) when a reconfiguration process instance is still in 
progress. When Metasolver is notified that a new solution has been created it will re-enable reconfiguration triggering. 
In addition, an optional timeout period can be defined in Metasolver configuration file. This period starts when a 
reconfiguration is triggered and upon expiring the reconfiguration is reenabled. This is a precaution against failures in 
reconfiguration process that could otherwise leave Metasolver in a state where reconfiguration triggering is permanently 
disabled. The simultaneous reconfiguration blocking must be explicitly enabled in Metasolver configuration file. 

Moreover, in order to prevent very frequent reconfigurations, which can lead to application instability, or failure, or 
reduced level of service, Metasolver can be configured to refrain from starting new reconfigurations for a predefined 
cool down period. The default value is 0 (i.e., no cool down) but it can be changed in Metasolver configuration file. 

Table 42 – Metasolver’s Reconfiguration Settings  

Configuration Setting Allowed/Default 
values 

Description 

reconfigurationBlockingPeriod Any long value 
Default: 0L 

Specifies the reconfiguration cool down period 
in milliseconds where no new reconfigurations 
will be started 

PreventConcurrentReconfigura 
tions 

true, false 
Default: false 

Flag for enabling or disabling the prevention 
the start of new reconfigurations while a 
running one has not ended, or the prevention 
timeout period has not yet expired 

PreventConcurrentReconfigura 
tionsTimeout 

Any long value 
Default: -1L 

Specifies the period in milliseconds where the 
concurrent reconfiguration prevention is active 

  

8.3 Miscellaneous updates 
A last update introduced in Metasolver, in the context of Morphemic, is the addition of the capability to publish debug 
events to a preconfigured topic. These events can be used to monitor and audit Metasolver activity, like CP model 
updates, starting of new reconfigurations, or reenabling reconfiguration after cooling down period. The debug events 
can be sent to an ActiveMQ broker other than that used for publishing the actual or predicted values. This feature is by 
default disabled, but it can be activated and configured using the following settings in Metasolver configuration file. 
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Table 43 – Metasolver’s Debuging Configuration Settings  

Configuration Setting Allowed/Default values Description 
debugEvents.enabled true, false 

Default: false 
Flag for enabling or disabling the publish of audit events 

debugEvents.topicName A valid ActiveMQ 
topic name 
Default: 

Metasolver_debug 

The topic where audit events will be published 

debugEvents.url ActiveMQ broker URL 
Default: n/a 

The URL of the ActiveMQ broker where audit event will 
be published 

debugEvents.username ActiveMQ broker 
username 

 Default: n/a 

The username for connecting to ActiveMQ broker (if 
needed) 

debugEvents.password ActiveMQ broker 
password 

 Default: n/a 

The password for connecting to ActiveMQ broker (if 
needed) 

debugEvents.certificate ActiveMQ broker 
certificate 
 Default: n/a 

The certificate for connecting to ActiveMQ broker (if 
needed) 

debugEvents.clientId ActiveMQ client Id 
 Default: n/a 

Optional client id to be used when connecting to the 
ActiveMQ broker 

9 Conclusions 

This deliverable provided a comprehensive description of all aspects of EMS, which is a federated monitoring system 
with self-healing capabilities that is able to aggregate, process and propagate the current monitoring context of multi-
cloud applications deployed by MORPHEMIC, to allow the platform to proactively respond to their needs (i.e., cope 
with SLO violations). We discussed and presented all the details of the MORPHEMIC monitoring approach, and we 
analysed the architecture of components involved in the proactive adaptation process. We sketched the relevant 
processes including the acquisition of both real-time and predicted metrics related to the QoS specification of the 
application and we listed all the aspects of eight forecasters that employ advanced time-series forecasting methods for 
proactively reconfiguring Morphemic-enabled cloud applications. 

The next steps of this work involve the further improvement of the MORPHEMIC forecasting module, mainly towards 
the investigation of other methods for ensembling predictions from different forecasters but also examine the use and 
implementation of additional forecasters that enable multi-variate forecasting algorithms. Finally, the next steps involve 
reporting on all WP2 task implementations that also concern the description of the final algorithms used for estimating 
the proactive utility along with the theoretical and practical assessment of the approach. 
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