

Use cases definition and preparation

MORPHEMIC

Modelling and Orchestrating heterogeneous Resources and Polymorphic applications for Holistic Execution and adaptation of Models In the Cloud

H2020-ICT-2018-2020

Leadership in Enabling and Industrial Technologies: Information and Communication Technologies

Grant Agreement Number 871643

Duration 1 January 2020 – 31 December 2022

www.morphemic.cloud

Deliverable reference D6.3

Date 31 December 2020

Responsible partner CHUV

Editor(s) Ferath Kherif

Reviewers Pawel Skrzypek, Ali Fahs

Distribution Confidential

Availability www.morphemic.cloud

Author(s)

Ferath Kherif (CHUV), Robert Gdowski (IS-W), Sebastian Geller (ICON), Ciro Formisano (ENG), Adeliya Latypova (CHUV),

Executive summary

This deliverable outlines the design of the use cases scenarios, including their description, the scenario requirements and targets, the infrastructures and platforms that will be utilized.

In this report, different scenarios are outlined explaining how MORPHEMIC will handle each individual use case within the project. This includes both the detailed descriptions of the requirements and the required technology / offerings of MORPHEMIC. We outline the methodological approach that was taken in this project in the development and description of the use cases scenarios. We also describe the primary MORPHEMIC usage scenarios and the use cases level scenarios. The primary audience of this document are the technical partners and the use case owners. Another audience are the target users and potential customers of all the implemented use cases in their respective application domains (i.e., 5G, brain imaging, and computational fluid dynamics). A wider communication will be accomplished by using our document as a foundation for the user guides which will be developed for each community based on the case studies provided. Moreover, the deliverable is important for technical audiences, including platform administrators, application developers, testers, etc., since it provides requirements and scenarios that can be utilized to build validation tests for the MORPHEMIC outcomes and identify their added value in different contexts.

Table of Contents

G	lossary		6
1	Intro	duction	7
	1.1	Purpose of the document	7
	1.2	Scope	7
	1.3	Outline	7
	1.4	Target audience	8
2	Use	case scenario preparation	9
	2.1	Use cases owners	9
	2.2	Use cases scenarios process	9
3	Use	case scenario design	11
	3.1	Design of MORPHEMIC usage scenarios	11
	3.2	Design of Use cases Scenarios	12
	3.3	List of the Use cases scenarios and nomenclatures	13
4	Use	case scenarios definition	14
	4.1	MORPHEMIC Usage: Modelling Scenarios	14
	4.1.1	Scenario 1: Set CAMEL model Application requirements	15
	4.1.2	Scenario 2: Set CAMEL model Application Metrics and utility Functions	17
	4.1.3	Scenarios 3: Set CAMEL model Application constraints	18
	4.1.4	Scenarios 4: Export CAMEL model	19
	4.2	MORPHEMIC Usage: Polymorphic deployment scenarios	20
	4.2.1	Scenarios 1: Set up and login	21
	4.2.2	Scenarios 2: Add Application	22
	4.2.3	Scenarios 3: Set cloud providers setting	23
	4.2.4	Scenarios 4: Initial Application Deployment	23
	4.3	MORPHEMIC Usage: Proactive Adaptation scenarios	25
	4.3.1	Scenarios 1: Application Deployment	25
	4.3.2	Scenarios 2: Metrics collection from sensors	26
	4.3.3	Scenarios 3: Reasoning	27
	4.3.4	Scenarios 4: reconfiguration	27
	4.3.5	Scenarios 5: Application redeployment	28
5	Use	case Scenarios	29
	5.1	Use case Scenarios: Virtualized base station for 5G cloud-RAN	29
	5.1.1	Applications Domain	29
	5.1.2	Business needs	29
	5.1.3	Business Performance and Key Performance Indicators	30
	5.1.4	Applications to be deployed	31
	5.1.5	Use case scenario roles	32
	5.1.6	Use case scenario definition	33

D6.3 Use cases definition and preparation

5.2	Use	case Scenarios: E-Brain Science	35
5.2.1		Applications Domain	35
5	5.2.2	Business needs	36
5	5.2.3	Business Performance and Key Performance Indicators	36
5	5.2.4	Applications to be deployed	38
5	5.2.5	Use case scenario roles	39
5	5.2.6	Use case scenario Definitions	39
5.3 Use		case Scenarios: Computational Fluid Dynamics simulation	44
5	5.3.1	Applications Domain	44
5.3.2		Business needs	44
5	5.3.3	Business Performance and Key Performance Indicators	45
5	5.3.4	Use cases scenario roles	47
5	5.3.5	Applications to be deployed	48
5	5.3.6	Use case scenario Definitions	48
6 7	Farget in	frastructure	53
7 I	Requirem	nents	56
7.1	7.1 Requirement for the MORPHEMIC Usage scenarios		56
7.2	Requ	uirement for the MORPHEMIC Use case scenarios	59
Conclusion			64

Date	Version	Partner	Description
25/11/2020	0.1 (draft)	CHUV	First draft
12/02/2021	0.2	CHUV	Second draft
06/06/2021	1.0	CHUV	Preliminary version
3/8/2021	1.1	SOFT	Review by Alessandra
			Bagnato
3/8/2021	1.2	7BULLS	Official review by Pawel
			Skrzypek
9/9/2021	2.0	CHUV	Revised version
13/9/2021	2.1	ACTIVEEON	Official review by Ali
			Fahs
16/9/2021	3.0	CHUV	Revised version
20/09/2021	3.1	ISW	PMB reading 2nd review

Revisions

Index of Figures

Figure 1- Use case Scenarios preparation process	9
Figure 2 - Flow of MORPHEMIC usage scenarios	11
Figure 3 - List of Use Cases scenarios and nomenclatures	13
Figure 4 - Modelling Scenarios Sequence Diagram.	14
Figure 5 - Proactive deployment scenarios Sequence Diagram	20
Figure 6 - Proactive Adaptation scenarios Sequence Diagram	25
Figure 7 - Cloud RAN: example of deployment	32
Figure 8 - Scenario of 5G cloud-RAN use case	32
Figure 9 - ISW static use case scenarios process diagram	34
Figure 10 - ISW dynamic use case scenarios process diagram	35
Figure 11 - CHUV architecture	
Figure 12 - CHUV image preprocessing use case scenarios process diagram	41
Figure 13 - CHUV SPM on web use case scenarios process diagram	42
Figure 14 - CHUV federated machine learning scenarios process diagram	44
Figure 15 - ICON Architecture	48
Figure 16- ICON LowFidelity scenario process diagram	50
Figure 17- ICON Medium fidelity use case scenarios process diagram	51
Figure 18 - ICON high fidelity use case scenarios process diagram	53
Figure 19 - Target Infrastructure	54
Figure 20 - Architecture of the testbed infrastructure	55

Index of Tables

Fable 1 - List of Features	.7
Fable 2 - List of Activities	.7
Table 3- Use case objectives and corresponding expected MORPHEMIC value proposition	10
Fable 4 - Modellimg Scenario 1 Definition 1	15
Table 5 - Modelling Scenario 2 Definition 1	17
Table 6 - Modelling Scenario 3 Definition 1	18
Table 7 - Modelling Scenario 4 Definition 1	19
Fable 8 - Polymorphic deployment Scenario 1 Definition	21
Fable 9 - Polymorphic deployment Scenario 2 Definition	22
Fable 10 - Polymorphic deployment Scenario 3 Definition	23
Fable 11 - Polymorphic deployment Scenario 4 Definition	23
Fable 12 - Proactive adaptation Scenario 1 Definition	25

Table 14 - Proactive adaptation Scenario 3 Definition27Table 15 - Proactive adaptation Scenario 4 Definition27Table 16 - Proactive adaptation Scenario 5 Definition28Table 17 - IS-Wireless expected business benefits from the MORPHEMIC platform30Table 18 - IS-Wireless KPI metrics and targets from the MORPHEMIC platform31Table 20 - ISW static use case scenario roles32Table 21 - ISW dynamic use case scenarios33Table 22 - CHUV expected business benefits from the MORPHEMIC platform36Table 23 - CHUV KPIs metrics and targets from the MORPHEMIC platform36Table 24 - CHUV validation roles for the MORPHEMIC platform38Table 25 - CHUV wilidation roles for the MORPHEMIC platform39Table 26 - CHUV Validation roles for the MORPHEMIC platform40Table 27 - CHUV federated machine learning use case scenarios41Table 28 - ICON expected business benefits from the MORPHEMIC platform45Table 29 - ICON KPIs metrics and targets from the MORPHEMIC platform46Table 29 - ICON kPIs metrics and targets from the MORPHEMIC platform46Table 30 - ICON validation roles for the MORPHEMIC platform46Table 31 - ICON low fidelity use case scenarios50Table 32 - ICON medium fidelity use case scenarios50Table 33 - ICON high fidelity use case scenarios51Table 34 - Use cases scenarios50Table 35 - Requirements for the MORPHEMIC supported target infrastructure53Table 36 - Requirements for the MORPHEMIC Use case scenarios56Table 36 - Require	Table 13 - Proactive adaptation Scenario 2 Definition	
Table 15 - Proactive adaptation Scenario 4 Definition27Table 16 - Proactive adaptation Scenario 5 Definition28Table 17 - IS-Wireless expected business benefits from the MORPHEMIC platform30Table 18 - IS-Wireless KPI metrics and targets from the MORPHEMIC platform31Table 19 - IS-Wireless use case scenario roles32Table 20 - ISW static use case scenarios33Table 21 - ISW dynamic use case scenarios34Table 22 - CHUV expected business benefits from the MORPHEMIC platform36Table 23 - CHUV KPIs metrics and targets from the MORPHEMIC platform36Table 24 - CHUV validation roles for the MORPHEMIC platform38Table 25 - CHUV wilidation roles for the MORPHEMIC platform39Table 26 - CHUV Validation roles for the MORPHEMIC platform41Table 27 - CHUV federated machine learning use case scenarios40Table 28 - ICON expected business benefits from the MORPHEMIC platform45Table 29 - ICON KPIs metrics and targets from the MORPHEMIC platform45Table 29 - ICON kPIs metrics and targets from the MORPHEMIC platform46Table 30 - ICON validation roles for the MORPHEMIC platform47Table 31 - ICON low fidelity use case scenarios50Table 32 - ICON medium fidelity use case scenarios50Table 33 - ICON high fidelity use case scenarios51Table 34 - Use cases scenarios assigned to MORPHEMIC supported target infrastructure53Table 35 - Requirements for the MORPHEMIC use case scenarios50Table 36 - Requirements for the MORPHEMIC Use case scenarios56 </td <td>Table 14 - Proactive adaptation Scenario 3 Definition</td> <td></td>	Table 14 - Proactive adaptation Scenario 3 Definition	
Table 16 - Proactive adaptation Scenario 5 Definition28Table 17 - IS-Wireless expected business benefits from the MORPHEMIC platform30Table 18 - IS-Wireless KPI metrics and targets from the MORPHEMIC platform31Table 19 - IS-Wireless use case scenario roles32Table 20 - ISW static use case scenarios33Table 21 - ISW dynamic use case scenarios33Table 22 - CHUV expected business benefits from the MORPHEMIC platform36Table 23 - CHUV KPIs metrics and targets from the MORPHEMIC platform36Table 24 - CHUV validation roles for the MORPHEMIC platform39Table 25 - CHUV image preprocessing use case scenarios40Table 26 - CHUV SPM on web use case scenarios41Table 27 - CHUV federated machine learning use case scenarios42Table 28 - ICON expected business benefits from the MORPHEMIC platform49Table 29 - ICON KPIs metrics and targets from the MORPHEMIC platform46Table 30 - ICON validation roles for the MORPHEMIC platform47Table 31 - ICON low fidelity use case scenarios49Table 31 - ICON high fidelity use case scenarios50Table 32 - ICON high fidelity use case scenarios51Table 34 - Use cases scenarios51Table 35 - Requirements for the MORPHEMIC supported target infrastructure53Table 36 - Requirements for the MORPHEMIC luse case scenarios56Table 37 - CHUV federated machine learning use case scenarios56Table 36 - Requirements for the MORPHEMIC luse case scenarios51	Table 15 - Proactive adaptation Scenario 4 Definition	
Table 17 - IS-Wireless expected business benefits from the MORPHEMIC platform30Table 18 - IS-Wireless KPI metrics and targets from the MORPHEMIC platform31Table 19 - IS-Wireless use case scenario roles32Table 20 - ISW static use case scenarios33Table 21 - ISW dynamic use case scenarios34Table 22 - CHUV expected business benefits from the MORPHEMIC platform36Table 23 - CHUV KPIs metrics and targets from the MORPHEMIC platform36Table 24 - CHUV validation roles for the MORPHEMIC platform39Table 25 - CHUV image preprocessing use case scenarios40Table 26 - CHUV SPM on web use case scenarios40Table 27 - CHUV federated machine learning use case scenarios42Table 28 - ICON expected business benefits from the MORPHEMIC platform45Table 29 - ICON KPIs metrics and targets from the MORPHEMIC platform46Table 29 - ICON kPIs metrics and targets from the MORPHEMIC platform46Table 30 - ICON validation roles for the MORPHEMIC platform47Table 31 - ICON low fidelity use case scenarios49Table 32 - ICON medium fidelity use case scenarios50Table 33 - ICON high fidelity use case scenarios50Table 34 - Use cases scenarios51Table 35 - Requirements for the MORPHEMIC supported target infrastructure53Table 36 - Requirements for the MORPHEMIC use case scenarios56Table 36 - Requirements for the MORPHEMIC supported target infrastructure53	Table 16 - Proactive adaptation Scenario 5 Definition	
Table 18 - IS-Wireless KPI metrics and targets from the MORPHEMIC platform31Table 19- IS-Wireless use case scenario roles32Table 20 - ISW static use case scenarios33Table 21 - ISW dynamic use case scenarios34Table 22 - CHUV expected business benefits from the MORPHEMIC platform36Table 23 - CHUV KPIs metrics and targets from the MORPHEMIC platform38Table 24 - CHUV validation roles for the MORPHEMIC platform39Table 25 - CHUV image preprocessing use case scenarios40Table 26 - CHUV SPM on web use case scenarios41Table 27 - CHUV federated machine learning use case scenarios42Table 28 - ICON expected business benefits from the MORPHEMIC platform45Table 29 - ICON KPIs metrics and targets from the MORPHEMIC platform45Table 30 - ICON validation roles for the MORPHEMIC platform47Table 31 - ICON low fidelity use case scenarios49Table 32 - ICON medium fidelity use case scenarios50Table 33 - ICON high fidelity use case scenarios51Table 34 - Use cases scenarios assigned to MORPHEMIC supported target infrastructure53Table 35 - Requirements for the MORPHEMIC Usage scenarios56Table 36 - Requirements for the MORPHEMIC use case scenarios56	Table 17 - IS-Wireless expected business benefits from the MORPHEMIC platform	
Table 19- IS-Wireless use case scenario roles32Table 20 - ISW static use case scenarios33Table 21 - ISW dynamic use case scenarios34Table 22 - CHUV expected business benefits from the MORPHEMIC platform36Table 23 - CHUV KPIs metrics and targets from the MORPHEMIC platform38Table 24 - CHUV validation roles for the MORPHEMIC platform39Table 25 - CHUV image preprocessing use case scenarios40Table 26 - CHUV SPM on web use case scenarios40Table 27 - CHUV federated machine learning use case scenarios42Table 28 - ICON expected business benefits from the MORPHEMIC platform45Table 29 - ICON KPIs metrics and targets from the MORPHEMIC platform46Table 30 - ICON validation roles for the MORPHEMIC platform47Table 31 - ICON low fidelity use case scenarios49Table 32 - ICON medium fidelity use case scenarios50Table 33 - ICON high fidelity use case scenarios50Table 34 - Use cases scenarios assigned to MORPHEMIC supported target infrastructure53Table 35 - Requirements for the MORPHEMIC Use case scenarios56Table 36 - Requirements for the MORPHEMIC Use case scenarios56	Table 18 - IS-Wireless KPI metrics and targets from the MORPHEMIC platform	
Table 20 - ISW static use case scenarios33Table 21 - ISW dynamic use case scenarios34Table 22 - CHUV expected business benefits from the MORPHEMIC platform36Table 23 - CHUV KPIs metrics and targets from the MORPHEMIC platform38Table 24 - CHUV validation roles for the MORPHEMIC platform39Table 25 - CHUV image preprocessing use case scenarios40Table 26 - CHUV SPM on web use case scenarios41Table 27 - CHUV federated machine learning use case scenarios42Table 28 - ICON expected business benefits from the MORPHEMIC platform45Table 29 - ICON KPIs metrics and targets from the MORPHEMIC platform46Table 30 - ICON validation roles for the MORPHEMIC platform47Table 31 - ICON low fidelity use case scenarios50Table 32 - ICON high fidelity use case scenarios51Table 33 - ICON high fidelity use case scenarios51Table 34 - Use cases scenarios assigned to MORPHEMIC supported target infrastructure53Table 35 - Requirements for the MORPHEMIC use case scenarios56Table 36 - Requirements for the MORPHEMIC use case scenarios56	Table 19- IS-Wireless use case scenario roles	
Table 21 - ISW dynamic use case scenarios34Table 22 - CHUV expected business benefits from the MORPHEMIC platform36Table 23 - CHUV KPIs metrics and targets from the MORPHEMIC platform38Table 24 - CHUV validation roles for the MORPHEMIC platform39Table 25 - CHUV image preprocessing use case scenarios40Table 26 - CHUV SPM on web use case scenarios41Table 27 - CHUV federated machine learning use case scenarios41Table 28 - ICON expected business benefits from the MORPHEMIC platform45Table 29 - ICON KPIs metrics and targets from the MORPHEMIC platform46Table 30 - ICON validation roles for the MORPHEMIC platform47Table 31 - ICON low fidelity use case scenarios49Table 32 - ICON medium fidelity use case scenarios50Table 33 - ICON high fidelity use case scenarios51Table 34 - Use cases scenarios assigned to MORPHEMIC supported target infrastructure53Table 35 - Requirements for the MORPHEMIC Usage scenarios56Table 36 - Requirements for the MORPHEMIC Use case scenarios56	Table 20 - ISW static use case scenarios	
Table 22 - CHUV expected business benefits from the MORPHEMIC platform.36Table 23 - CHUV KPIs metrics and targets from the MORPHEMIC platform.38Table 24 - CHUV validation roles for the MORPHEMIC platform.39Table 25 - CHUV image preprocessing use case scenarios.40Table 26 - CHUV SPM on web use case scenarios.41Table 27 - CHUV federated machine learning use case scenarios.42Table 28 - ICON expected business benefits from the MORPHEMIC platform45Table 29 - ICON KPIs metrics and targets from the MORPHEMIC platform46Table 30 - ICON validation roles for the MORPHEMIC platform47Table 31 - ICON low fidelity use case scenarios50Table 32 - ICON medium fidelity use case scenarios51Table 33 - ICON high fidelity use case scenarios51Table 34 - Use cases scenarios assigned to MORPHEMIC supported target infrastructure53Table 35 - Requirements for the MORPHEMIC Usage scenarios56Table 36 - Requirements for the MORPHEMIC Use case scenarios56	Table 21 - ISW dynamic use case scenarios	
Table 23 - CHUV KPIs metrics and targets from the MORPHEMIC platform38Table 24 - CHUV validation roles for the MORPHEMIC platform39Table 25 - CHUV image preprocessing use case scenarios40Table 26 - CHUV SPM on web use case scenarios41Table 27 - CHUV federated machine learning use case scenarios42Table 28 - ICON expected business benefits from the MORPHEMIC platform45Table 30 - ICON KPIs metrics and targets from the MORPHEMIC platform46Table 31 - ICON low fidelity use case scenarios49Table 32 - ICON medium fidelity use case scenarios50Table 33 - ICON high fidelity use case scenarios51Table 34 - Use cases scenarios assigned to MORPHEMIC supported target infrastructure53Table 35 - Requirements for the MORPHEMIC Usage scenarios56Table 36 - Requirements for the MORPHEMIC Use case scenarios50	Table 22 - CHUV expected business benefits from the MORPHEMIC platform	
Table 24 - CHUV validation roles for the MORPHEMIC platform39Table 25 - CHUV image preprocessing use case scenarios40Table 26 - CHUV SPM on web use case scenarios41Table 27 - CHUV federated machine learning use case scenarios42Table 28 - ICON expected business benefits from the MORPHEMIC platform45Table 30 - ICON KPIs metrics and targets from the MORPHEMIC platform46Table 31 - ICON low fidelity use case scenarios49Table 32 - ICON medium fidelity use case scenarios50Table 33 - ICON high fidelity use case scenarios50Table 34 - Use cases scenarios assigned to MORPHEMIC supported target infrastructure53Table 35 - Requirements for the MORPHEMIC Usage scenarios56Table 36 - Requirements for the MORPHEMIC Use case scenarios50	Table 23 - CHUV KPIs metrics and targets from the MORPHEMIC platform	
Table 25 - CHUV image preprocessing use case scenarios40Table 26 - CHUV SPM on web use case scenarios41Table 27 - CHUV federated machine learning use case scenarios42Table 28 - ICON expected business benefits from the MORPHEMIC platform45Table 29 - ICON KPIs metrics and targets from the MORPHEMIC platform46Table 30 - ICON validation roles for the MORPHEMIC platform47Table 31 - ICON low fidelity use case scenarios49Table 32 - ICON medium fidelity use case scenarios50Table 33 - ICON high fidelity use case scenarios51Table 34 - Use cases scenarios assigned to MORPHEMIC supported target infrastructure53Table 35 - Requirements for the MORPHEMIC Usage scenarios56Table 36 - Requirements for the MORPHEMIC Use case scenarios50	Table 24 - CHUV validation roles for the MORPHEMIC platform	
Table 26 - CHUV SPM on web use case scenarios41Table 27 - CHUV federated machine learning use case scenarios42Table 28 - ICON expected business benefits from the MORPHEMIC platform45Table 29 - ICON KPIs metrics and targets from the MORPHEMIC platform46Table 30 - ICON validation roles for the MORPHEMIC platform47Table 31 - ICON low fidelity use case scenarios49Table 32 - ICON medium fidelity use case scenarios50Table 33 - ICON high fidelity use case scenarios51Table 34 - Use cases scenarios assigned to MORPHEMIC supported target infrastructure53Table 35 - Requirements for the MORPHEMIC Usage scenarios56Table 36 - Requirements for the MORPHEMIC Use case scenarios59	Table 25 - CHUV image preprocessing use case scenarios	40
Table 27 - CHUV federated machine learning use case scenarios42Table 28 - ICON expected business benefits from the MORPHEMIC platform45Table 29 - ICON KPIs metrics and targets from the MORPHEMIC platform46Table 30 - ICON validation roles for the MORPHEMIC platform47Table 31 - ICON low fidelity use case scenarios49Table 32 - ICON medium fidelity use case scenarios50Table 33 - ICON high fidelity use case scenarios51Table 34 - Use cases scenarios assigned to MORPHEMIC supported target infrastructure53Table 35 - Requirements for the MORPHEMIC Usage scenarios56Table 36 - Requirements for the MORPHEMIC Use case scenarios59	Table 26 - CHUV SPM on web use case scenarios	41
Table 28 - ICON expected business benefits from the MORPHEMIC platform.45Table 29 - ICON KPIs metrics and targets from the MORPHEMIC platform.46Table 30 - ICON validation roles for the MORPHEMIC platform.47Table 31 - ICON low fidelity use case scenarios.49Table 32 - ICON medium fidelity use case scenarios.50Table 33 - ICON high fidelity use case scenarios.51Table 34 - Use cases scenarios assigned to MORPHEMIC supported target infrastructure.53Table 35 - Requirements for the MORPHEMIC Usage scenarios.56Table 36 - Requirements for the MORPHEMIC Use case scenarios.59	Table 27 - CHUV federated machine learning use case scenarios	42
Table 29 - ICON KPIs metrics and targets from the MORPHEMIC platform46Table 30 - ICON validation roles for the MORPHEMIC platform47Table 31 - ICON low fidelity use case scenarios49Table 32 - ICON medium fidelity use case scenarios50Table 33 - ICON high fidelity use case scenarios51Table 34 - Use cases scenarios assigned to MORPHEMIC supported target infrastructure53Table 35 - Requirements for the MORPHEMIC Usage scenarios56Table 36 - Requirements for the MORPHEMIC Use case scenarios59	Table 28 - ICON expected business benefits from the MORPHEMIC platform	45
Table 30 - ICON validation roles for the MORPHEMIC platform47Table 31 - ICON low fidelity use case scenarios49Table 32 - ICON medium fidelity use case scenarios50Table 33 - ICON high fidelity use case scenarios51Table 34 - Use cases scenarios assigned to MORPHEMIC supported target infrastructure53Table 35 - Requirements for the MORPHEMIC Usage scenarios56Table 36 - Requirements for the MORPHEMIC Use case scenarios59	Table 29 - ICON KPIs metrics and targets from the MORPHEMIC platform	46
Table 31 - ICON low fidelity use case scenarios	Table 30 - ICON validation roles for the MORPHEMIC platform	47
Table 32 - ICON medium fidelity use case scenarios50Table 33 - ICON high fidelity use case scenarios51Table 34 - Use cases scenarios assigned to MORPHEMIC supported target infrastructure53Table 35 - Requirements for the MORPHEMIC Usage scenarios56Table 36 - Requirements for the MORPHEMIC Use case scenarios59	Table 31 - ICON low fidelity use case scenarios	49
Table 33 - ICON high fidelity use case scenarios51Table 34 - Use cases scenarios assigned to MORPHEMIC supported target infrastructure53Table 35 - Requirements for the MORPHEMIC Usage scenarios56Table 36 - Requirements for the MORPHEMIC Use case scenarios59	Table 32 - ICON medium fidelity use case scenarios	50
Table 34 - Use cases scenarios assigned to MORPHEMIC supported target infrastructure53Table 35 - Requirements for the MORPHEMIC Usage scenarios56Table 36 - Requirements for the MORPHEMIC Use case scenarios59	Table 33 - ICON high fidelity use case scenarios	51
Table 35 - Requirements for the MORPHEMIC Usage scenarios56Table 36 - Requirements for the MORPHEMIC Use case scenarios59	Table 34 - Use cases scenarios assigned to MORPHEMIC supported target infrastructure	53
Table 36 - Requirements for the MORPHEMIC Use case scenarios 59	Table 35 - Requirements for the MORPHEMIC Usage scenarios	56
	Table 36 - Requirements for the MORPHEMIC Use case scenarios	59

Glossary

Acronyms		
I Artificial Intelligence		
CAMEL	Cloud Application Model Language	
CAPEX	Capital Expenditures	
CFD	Computational Fluid Dynamics	
COTS	Commercial Of-the-Shelve	
СР	Control Plane	
СРИ	Central Processing Unit	
СТО	Chief Technology Officer	
CU	Central Unit	
CU-CP	Central Unit – Control Plane	
CU-UP	Central Unit – User Plane	
DPDK	Data Plane Development Kit	
DTI	Diffusion Tensor Imaging	
DU	Data Unit	
DWI	Diffusion-Weighted Imaging	
FPGA	Field Programmable Gate Array	
GPU	Graphics Processing Unit	
HPC	High Performance Computing	
MAC	Media Access Control	
ML	Machine Learning	
MNO	Mobile Network Operators	
MRI	Magnetic Resonance Imaging	
MVNO	Mobile Virtual Network Operators	
NFS	Network File System	
NFV	Network Function Virtualization	
OS	Operating System	
OPEX	Operating Expenses	
PDCP	Packet Data Convergence Protocol	
РНҮ	Physical Layer	
QoS	Quality of Service	
QoE	Quality of Experience	
RAN	Radio Access Network	
RIC	Radio Intelligent Controller	
RF	Radio Frequency	
RLC	Radio Link Control	
RRC	Radio Resource Control	
RU	Radio Unit	
SDAP	Service Data Adaptation Protocol	
SDN	Software Defined Network	
SD-RAN	Software Defined - RAN	
SLA	Service Level Agreement	
SPM	Statistical Parametric Mapping	
	User Interface	
VM	Virtual Machine	
VNF	Virtualized Network Function	
vRAN	Virtualized RAN	

1 Introduction

1.1 Purpose of the document

This deliverable outlines the design of the use cases scenarios, including their description, the scenario requirements and targets, the infrastructures and platforms that will be incorporated. The use case scenarios target various application areas such as 5G software defined networks, brain medical imaging, and computational fluid dynamics.

1.2 Scope

The MORPHEMIC platform brings a significant change in the way applications are deployed and managed, offering users incredible value. By introducing polymorphic architecture adaptation and proactive adaptation, MORPHEMIC offers a novel solution for adapting and optimizing Cloud Computing applications. MORPHEMIC extends a state-of-the-art modelling language CAMEL to allow for the flexible, provider-independent modelling of cloud applications at various abstraction levels, covering big data and network aspects, as well as any type of resource, platform, or service (including both cloud & edge resources and services). This document defines the use case (deployment, application) through these scenarios, the developed platform will be able to demonstrate their broad applicability.

The content of this document, the use cases and the scenarios are directly linked to the following MORPHEMIC features:

Table 1 - List of Features

Feature Id	Feature Name		
Feature 1	Polymorphic adaptation		
Feature 2	Proactive adaptation		
Feature 3	Self-healing capabilities		
Feature 4	Hardware accelerators support		
Feature 5	Security concepts		
Feature 6	Unified User Interface		

Additionally, these descriptions will cover the following topics:

Table 2 - List of Activities

Activities Id	Activities Name
Activities:1	Use case applications adaptation
Activities:2	Use case applications validation
Activities:3	Scientific dissemination
Activities:4	Industry communication

1.3 Outline

Deliverable structure: In this deliverable, different scenarios are outlined explaining how MORPHEMIC will handle each individual use case within the project. This will include both detailed descriptions of the requirements and required technology.

In details:

- Chapter 2 presents briefly the three use cases of the project and outlines the process for preparing use cases scenarios, including the definition of the primary MORPHEMIC usage scenarios used to interpret more complex use cases.
- Chapter 3 contains templates for more detailed descriptions of use case scenarios in narrative form or sequence diagrams.
- o **Chapter 4** discusses the detailed, step-by-step MORPHEMIC usage scenarios: modelling, polymorphic deployment, proactive adaptation.

- o In the **chapter 5** we cover the use case scenarios in greater detail, including application domain, business needs, business performance and key performance indicators, application to be deployed, use case scenario roles, use case scenario definition.
- o In **chapter 6**, an overview of target infrastructure is presented for the validation and future production based on the use case requirements
- o In **chapter 7**, the requirements provided earlier in D6.1 Industrial requirements analysis are linked with the MORPHEMIC usage scenarios and use case scenarios.
- o Finally, chapter 8 conclusions are provided along with future steps.

1.4 Target audience

The deliverable is beneficial for technical audiences, including platform administrators, application developers, testers, etc., since it provides requirements and scenarios that can be utilized to build validation tests for the platform.

The other audience of this document is target users and potential customers of all the implemented use cases in their respective application domains (5G, brain imaging, and computational fluid dynamics). Note that, to reach this audience, the related part of the deliverable will be converted to guides.

2 Use case scenario preparation

2.1 Use cases owners

MORPHEMIC was defined in the context of three use cases that were introduced in D6.1. Here we extend the definition of these use cases to show how they interact with the MOPHEMIC platform.

The three use cases highlight a broad range of potential scenarios across multiple application domains. The use cases considered are:

- 1. <u>Virtualized base station for 5G cloud-RAN</u>, proposed by IS-Wireless. IS-Wireless is a leader in the development of algorithms, protocols and tools for 4G and 5G mobile networks. IS-Wireless provides licensable, NFV-compatible (*Network Function Virtualization*) software implementing standard-compliant RAN (Radio Access Network) protocols ready for evolution to 5G.
- 2. <u>E-Brain Science</u>, proposed by Centre Hospitalier Universitaire Vaudois (CHUV). CHUV is one of the five Swiss University hospitals. Specifically, the use case can be applied to the work of the *Laboratoire de recherche en neuroimagerie* (LREN), which consists of a cross-disciplinary team of basic and clinical neuroscientists with an interest in the role of human brain structure and function in neurological disorders and healthy aging.
- 3. <u>Computational Fluid Dynamic Simulation</u>, proposed by ICON. ICON Technology & Process Consulting Limited operates in the high-tech field of Computational Fluid Dynamics (CFD) and provides blue-chip multi-sector engineering companies, their suppliers and consultants with the ability to predict fluid flow using 3D computer simulation.

2.2 Use cases scenarios process

Analysis of requirements that were collected previously, combined with a discussion about the business needs and challenges expressed by the users involved in the use cases, led to the creation of **MORPHEMIC usage scenarios** and the use case scenarios. MORPHEMIC's usage scenarios illustrate the various ways in which the platform can be used, and help to clarify the more complex **use case scenarios**.

Figure 1- Use case Scenarios preparation process

MORPHEMIC's use case scenarios underscore the benefits it brings to the European industry in healthcare, 5G, and industrial engineering. Some of these benefits include:

- Through the deployment of multiple clouds, it is possible to expand and scale applications, resulting in low cloud costs by preventing vendor lock-in.
- The automatic configuration of an application enhances its reliability and maintains service levels while improving its robustness.
- Adaptive application provisioning reduces the administration workload and costs associated with managing applications, as well as increasing automation.

The table below shows the overall objectives for each use case and the expected MORPHEMIC value proposition corresponding to them.

 Table 3- Use case objectives and corresponding expected MORPHEMIC value proposition

3 Use case scenario design

The definition of the use case scenarios describes the relationship between the users of each use case application and the MORPHEMIC platform in order for them to achieve their goal. The methodology followed here is to describe the users' actions when using the use case applications and the interactions they have with the MORPHEMIC platform before (Modelling), during (Deployment) and after deployment (Adaptation). Thus, we begin by describing the main MORPHEMIC usage scenarios. Composite use case scenarios are then derived from these primary MORPHEMIC usage scenarios.

3.1 Design of MORPHEMIC usage scenarios

MORPHEMIC usage scenarios are grouped into three main categories: modelling, deployment and adaptation. A sequence diagram, which illustrates the actions within each scenario category, is used to describe how components of the system communicate with each other (Figure 2). In the first group (Modelling Scenarios), the application is described as a collection of the components and resources required. In addition, the description includes the utilities functions and constraints that will be optimized by MORPHEMIC. By combining the CAMEL model and the cloud providers offers in the second stage (Polymorphic deployment scenarios), the applications can be deployed using the dedicated UI and tools of MORPHEMIC. Finally, the last important step (Proactive Adaptation scenarios) consists of managing and adapting the application in a proactive manner.

Figure 2 - Flow of MORPHEMIC usage scenarios

In order to describe user actions, we use a use case scenario template, as shown below.

- Use case scenario template, for each use case the following elements will be included:
 - o case ID: A unique number for identifying each scenario
 - Name: The title of the scenario, usually indicative of the main activity.
 - Actor: An actor is a user who interacts with a system in order to accomplish a task. They are divided into roles such as Admin, DevOps, Developers, and End Users.
 - **Pre-conditions:** The pre-conditions are requirements which must be met before the scenario can begin.
 - o Post-conditions: Post-conditions represent the system's state after the scenario has finished.
 - Steps: Steps represents the steps taken by the user as she interacts with the system.
 - **Description**: Brief summary of the scenario, including the user's objective and the benefit the user receives.

- Use case diagram: Graphical representation of the actions that a user performs as he/she interacts with the system.
- Relationship: Dependencies and relation with other scenarios.
- **Requirements**: List of use case and systems requirements.

3.2 Design of Use cases Scenarios

In each of the use cases, we begin by presenting important information about the business environment and the anticipated benefits of using the MORPHEMIC platform. The format of these descriptions is presented in the form of a narrative and a business process diagram. Both methods provide a concise description of the sequence of steps as described in the MORPHEMIC usage scenarios.

3.3 List of the Use cases scenarios and nomenclatures

Figure 3 - List of Use Cases scenarios and nomenclatures

4 Use case scenarios definition

4.1 MORPHEMIC Usage: Modelling Scenarios

The modelling scenarios include the steps required to describe the application's components. MOPRPHEMIC utilises Melodic solutions and tools for application modelling, including Cloud Application Modelling and Execution Language (CAMEL). CAMEL enables the modelling of all aspects of multi-cloud application management. From the point of view of the user, the completion of the model includes the execution of a number of sequential steps indicated in the figure below. In the following sections, we will detail each step corresponding to specific scenarios:

- Set CAMEL model Application requirements
- Set CAMEL model Application Metrics and utility Functions
- Set CAMEL model Application constraints
- Export CAMEL model

Figure 4 - Modelling Scenarios Sequence Diagram.

The diagram traces the path of steps of the MOPHEMIC usage scenarios related to polymorphic modelling

4.1.1 Scenario 1: Set CAMEL model Application requirements

Table 4 - Modellimg Scenario 1 Definition

ID	Name	Short description	Relationship				
MOD_SC_MOR_ 01	Set CAMEL model application requirements	The user use Eclipse or UI to define the CAMEL model with the application requirements	Included in Modelling scenario				
Actors							
Admin							
Pre-condition							
CAMEL Designer							
Post-condition							
CAMEL model upda	ated and saved						
Link to requiremen	nts (D6.1)						
Please refer to the re	quirements tables						
Steps	Steps						
 Set application CAMEL model Set requirements Location requirements Resource requirements Platform requirements Provider requirements OS requirements Security requirements Security requirements Vertical scale Vertical scale Set VM Set container Set communication Set port 							
Use case diagram							

4.1.2 Scenario 2: Set CAMEL model Application Metrics and utility Functions

Table 5 - Modelling Scenario 2 Definition

ID	Name	Short description	Relationshin	
MOD_SC_MOR_ 02	Set CAMEL model application metrics	The user uses Eclipse or UI to define CAMEL model with the application metrics	Included in Modelling scenario	
Actors				
Admin				
Pre-condition				
- Eclipse CAl	MEL editor installe	ed		
Or				
- Unified user	r interface installed			
Post-condition	1 1 1 / 1 1			
- CAMEL mo	odel updated and sa	aved		
Link to requiremen	nts (D6.1)	4 4 1 1		
- Please refer	r to the requiremen	ts tables		
Steps				
- Set applicat	ion metrics			
o Set	utility function for	mula		
	 Template 			
~	 Formula 			
o Set	metrics			
	 Raw metric Composite me 	tria		
Use case diagram	- Composite ine			
Eclipse Edi	tor			
Or UI				
			(Template)	
			< <include>></include>	
		Set Utility	<pre>Formula</pre>	
Function Formula <include>> Raw Metric</include>				
Se	et Application	<pre> <<include>>> Set Metrics </include></pre>		
H H metrics	and utility functions		Composite Metric	
User				

4.1.3 Scenarios 3: Set CAMEL model Application constraints

 Table 6 - Modelling Scenario 3 Definition

ID	Name	Short description	Relationship
MOD_SC_MOR_ 03	Set CAMEL model Application constraints	The user uses Eclipse or UI to define CAMEL model with the Application constraints	Included in Modelling scenario
Actors			
Admin			
Pre-condition			
 Eclipse CAN Or Unified user 	MEL editor installe	ed 1	
Post-condition			
- CAMEL mo	del updated and sa	aved	
Link to requiremen	its (D6.1)		
- Please refer	to the requiremen	ts tables	
Steps			
- Set applicati o Set o	on constraints constraints		
Use case diagram			
Eclipse Edit Or UI	t Application Constraints	Set Constrain	ts

4.1.4 Scenarios 4: Export CAMEL model

Table 7 - Modelling Scenario 4 Definition

ID	Name	Short description	Relationship
MOD_SC_MOR_ 04	Export CAMEL Model	The user uses Eclipse or UI to export the CAMEL model as XMI file.	Included in Modelling scenario
Actors			
- Admin			
Pre-condition			
- Eclipse CAI Or	MEL editor installe	ed .	
- Unified user	interface installed	l	
CAMEL mo	del undated and so	wed	
Link to requirement	(D6.1)	ived	
- Please refer	to the requiremen	ts tables	
Steps			
- Save model			
Use case diagram			
C User	Save	e Model	

4.2 MORPHEMIC Usage: Polymorphic deployment scenarios

This section provides a map of the steps that a user must follow to successfully deploy the application using the MORPHEMIC platform. An overview is provided in the sequential diagram, and we go into more detail about each step in the following sections for each usage scenarios:

- Set up and login
- Add Application
- Set cloud providers setting
- Initial Application Deployment

4.2.1 Scenarios 1: Set up and login

Table 8 - Polymorphic deployment Scenario 1 Definition

4.2.2 Scenarios 2: Add Application

Table 9 - Polymorphic deployment Scenario 2 Definition

4.2.3 Scenarios 3: Set cloud providers setting

Table 10 - Polymorphic deployment Scenario 3 Definition

4.2.4 Scenarios 4: Initial Application Deployment

Table 11 - Polymorphic deployment Scenario 4 Definition

ID	Name	Short description	Relationship
DEP_SC_MOR_0 4	Initial Application Deployment	The user selects application to be deployed and cloud providers and initiate deployment	Included in deployment scenarios
Actors			
- Admin			
Pre-condition			

MORPHEMIC platform is installed and running Application CAMEL model loaded --Cloud providers offers available -**Post-condition** - Application is deployed Link to requirements (D6.1) Please refer to the requirements tables Steps Initial deployment -Use case diagram Cloud environnement Deployed Application User User

4.3 MORPHEMIC Usage: Proactive Adaptation scenarios

The polymorphic adaptation scenarios describe the sequential steps involved in the adaptation of a given application's software architecture in order to optimise its deployment plan according to the users' needs. An overview is provided in the sequential diagram, and we go into more detail about each step in the following sections for each usage scenarios:

- Application Deployment
- Metrics collection from sensors
- Application redeployment

Figure 6 - Proactive Adaptation scenarios Sequence Diagram

4.3.1 Scenarios 1: Application Deployment

Table 12 - Proactive adaptation Scenario 1 Definition

ID	Name	Short description	Relationship		
ADP_SC_MOR_0	Application	The end users use the	Included in adaptation scenarios		
1	Deployment	deployed application			
Actors					
- End User					
Pre-condition					
- MORPHEM	IC platform is ins	talled and running			
- Application	- Application CAMEL model loaded				
 Cloud provide 	- Cloud providers offers available				
Post-condition					
- Application	is deployed				
Link to requirements (D6.1)					
Please refer to the re	equirements tables	3			

4.3.2 Scenarios 2: Metrics collection from sensors

Table 13 - Proactive adaptation Scenario 2 Definition

ID	Name	Short description	Relationship	
ADP_SC_MOR_0 2	Metrics sensors collection	The application is monitored via the metric collected from the application sensors	Included in adaptation scenarios	
Actors				
- End User				
Pre-condition				
MORPHEMApplication	IC platform is inst is deployed and ru	alled and running nning		
Post-condition				
- Application	is monitored			
Link to requiremen	Link to requirements (D6.1)			
- Please refer	- Please refer to the requirements tables			
Steps				
- Application o Buil o Cus o Con	sensors t-in raw metrics co tom raw metrics co posite metric colle	ollection ollection ection		
Use case diagram				

4.3.3 Scenarios 3: Reasoning

 Table 14 - Proactive adaptation Scenario 3 Definition

ID	Name	Short description	Relationship
ADP_SC_MOR_1 1	Reasoning	The reasoning is concerned with the steps by which MOPHEMIC will determine what deployment model is optimal for the current application according to the utility functions and constraints.	Included in adaptation scenarios
Actors			
- End User			
Pre-condition			
 MORPHEM Application Metrics are of Utility funct 	IC platform is inst is deployed collected ions are computed	talled and running	
Post-condition			
- Optimized d	eployment model		
Link to requiremen	its (D6.1)		
- Please refer	to the requirement	s tables	
4.3.4 Scenarios 4:	reconfiguration		

Table 15 - Proactive adaptation Scenario 4 Definition

ationship	Short description	Name	ID
-----------	-------------------	------	----

ADP_SC_MOR_0 4	Reconfigurati on	A new deployment model is generated based on the utility function and the constraints, and the application will be re- deployed accordingly.	Included in adaptation scenarios
Actors			
- End User			
Pre-condition			
 MORPHEM Application Metrics are of Utility funct 	IC platform is inst is deployed collected ions are computed	alled and running	
Post-condition			
- Optimized d	eployment model		
Link to requiremen	its (D6.1)		
- Please refer to the requirements tables			

4.3.5 Scenarios 5: Application redeployment

Table 16 - Proactive adaptation Scenario 5 Definition

ID	Name	Short description	Relationship
ADP_SC_MOR_0 5	Redeployment	Application is redeployed according to the newly optimized deployment model.	Included in adaptation scenarios
Actors			
- End User			
Pre-condition			
 MORPHEM Application Metrics are of Utility funct 	IC platform is inst is deployed collected ions are computed	called and running	
Post-condition			
- Optimized d	eployment model		
Link to requiremen	its (D6.1)		
- Please refer	to the requiremen	ts tables	

5 Use case Scenarios

5.1 Use case Scenarios: Virtualized base station for 5G cloud-RAN

5.1.1 Applications Domain

IS-Wireless develops and delivers 5G networking solutions. The solution includes standard-compliant software and hardware required to build 5G as well as 4G telco networks by mobile network operators (MNO), mobile virtual network operators (MVNO), private institutions, municipalities and many more.

IS-Wireless specializes in software solutions for the Radio Access Network (RAN), which is the most costly, crossdisciplinary and challenging part of a telecom network. 1000x higher capacity can only be provided with a much denser RAN network, where spectrum is reused aggressively by numerous low-power low-cost Radio Heads. There exist various challenges to achieve these goals such as interference, assured and increased QoS, which needs to be provided at lower network CAPEX and OPEX. This makes RAN the critical part of 5G.

The telecom industry currently undergoes the shift from proprietary solutions, where custom made hardware is tightly connected to the software running on top, to virtualized approach in which software is able to run on the COTS (Commercial Of-The-Shelve) equipment. Such solution is named interchangeably as SD-RAN, vRAN or Cloud RAN. The virtualization, however, must go hand-in-hand with substantial changes in the way the software is built. In order harvest the full potential of the cloud computing paradigm the software should be divided into a microservices to improve flexibility and facilitate agile software development. On the other hand, proper virtualization technique to tackle different operational and business needs must be also taken into consideration.

5.1.2 **Business needs**

The main challenge facing the telecom industry is to ensure the quality of the telecom services won't degrade by operating on COTS equipment. The stringent requirements regarding the latency and throughput between components, as well as reliability must be seamlessly mapped on the common-purpose computing infrastructure. Employing specialized acceleration hardware, awareness of the hardware platform (such as Intel's Enhanced Platform Awareness), and dynamic (proactive) resource allocation seems to be necessary. Another question is how to allocate enough resources so to handle the significant variation in the amount of user and user data so it does not become a bottleneck in the end-to-end communication. Static computing resources coming with the proprietary hardware are now being replaced with the flexible resource pools, proper (dynamic) allocation of the resources to the actual demand of the RAN communication services is key to ensure the profitability.

5.1.3 Business Performance and Key Performance Indicators

Table 17 - IS-Wireless expected business benefits from the MORPHEMIC platform

Business performance			
MORPHEMIC	Use cases So	cenarios Involved:	
platform administrator	UC SC ISV	W Static MOD, UC SC ISW Static DEP	
*	UC_SC_ISV	W_Dynamic_MOD, UC_SC_ISW_Dynamic_DEP	
In charge of	Telcom integrators and operators providing 5G connectivity to the end user (mobile		
administering the	subscribers,	IoT devices).	
platform Dusiness Derformance	Speed	Immediate execution of CAMEL series on the underlying cloud platforms	
business reriormance	Speed	Describle cost reduction due to the bug free design and energy actions	
	Cost Daliah ilita	Possible cost reduction due to the bug-free design and open-source origin	
	Reliability	ensuring the complete and error free task execution	
	Flexibility	Flexibility in adding cloud providers, images and CAMEL descriptors increases the agility related to the maintenance	
	Quality	Precision in executing workloads according to CAMEL guidance improves the quality of work with the MORPHEMIC platform	
Resource provider	Use cases So	cenarios Involved	
	UC_SC_ISV	W_Static_DEP W_Dynamia_DEP	
Responsible for	Public cloud	w_Dynamic_DEP providers: (AWS_Azure_Google Cloud_etc.) client's local data centres	
providing the	(private clou	ids). IS-Wireless data centre.	
computational	u u	,,	
resources?			
Business Performance	Speed	It is faster for 5G deployments to find suitable resources meeting	
		corresponding requirements (e.g., location oriented) in the context of	
	Cost	Cost efficient use of computing resources across cloud environments	
	Doliobility	Cost-efficient use of computing resources across cross-croud environments	
	Kenability	multiple cloud providers brings a bigger pool of resources to choose from	
		when deploying a particular instance; in result, precision of choosing right	
		resources (e.g., resource type) as well as the availability of resources for	
		the deployments are improved contributing to higher reliability.	
	Flexibility	Easy way to accommodate new resource pools	
	Quality	Efficient use of allocated resources and decommission if not needed	
Application provider	Use cases Se	cenarios Involved:	
	UC_SC_ISV	W_Static_MOD, UC_SC_ISW_Static_DEP	
Responsible for	UC_SC_IS	w_Dynamic_MOD, UC_SC_ISw_Dynamic_DEP	
providing the	15- 10 1101035		
application to be			
deployed?			
Business Performance	Speed	Fast adaptation due to the proactive adaptation feature	
	Cost	Reduced cost due to the utility based choosing of the most optimal offer	
	D -1:-1:11-	based on the trade-off between the cost and the performance	
	Kellability	Possibility to switch or scale resources in case of constraint violation, even before the violation actually occurs	
	Flexibility	Polymorphic adaptation enables a flexible choice of deployment	
		technology	

	Quality	Constraint and utility definition enables a highly customizable and targeted reaction with regard to the changing operational environment enabling the self-optimization of the deployed instance of the application so as to preserve the quality level delivered
Application end-user	Use cases So	cenarios Involved:
	UC_SC_ISV	W_Static_DEP
	UC_SC_ISV	W_Dynamic_DEP, UC_SC_ISW_Dynamic_ADP
Final user of the	Telcom integ	grators and operators providing 5G connectivity to the end user (mobile
application	subscribers,	IoT devices).
	Speed	Getting 5G connectivity deployment in a timely manner
	Cost	5G services are deployed in multi-cloud environment ensuring cost optimization
	Reliability	Constraint violation tracking and proactive adaptation feature ensure fast reaction to the problem, even before its actual occurrence
	Flexibility	Different use scenarios are covered by the enhanced adaptivity offered through the MORPHEMIC platform
	Quality	Due to securing enough resources for the SD-RAN system to support QoS related to 5G connectivity of the user and at the same time long up-time of the 5G services, quality of experience (QoE) is improved

Table 18 - IS-Wireless KPI metrics and targets from the MORPHEMIC platform

KPI metric	KPI metrics and targets			
Network d	eployment cost (CAPEX)			
Target	Decrease by up to 30% (e.g., ca. 10mln EUR for a network of 600 cells based on the references included in the project GA).			
Network re	edesign time			
Target	Savings up to 2 site visits per site per year.			
Network d	eployment automation strategies			
Target	3-4 operator-oriented strategies available (e.g., "performance / security tradeoff", "low radio network capacity but high security").			

5.1.4 Applications to be deployed

The deployment scenario is focused on static deployment of the RAN. In other terms, according to the required infrastructural capabilities, MORPHEMIC will determine the best polymorphic application deployment configuration on edge and cloud. In this scenario, depicted in below, all the RAN elements (DU, CU-UP, CU-CP, RIC) are deployed in the local Edge server with enough allocated resources to support basic operations for one user. The core networking element of the 5G network (5GC), which together with RAN will allow end-to-end communication, will reside on the cloud and be either pre-deployed or deployed by MORPHEMIC in the multi-cloud deployment.

D6.3 Use cases definition and preparation

Figure 7 - Cloud RAN: example of deployment

Components can be virtualized at the edge and in the cloud. A component's location may depend on the availability of resources and the RAN resource demand (e.g., number of users).

Figure 8 - Scenario of 5G cloud-RAN use case

5.1.5 Use case scenario roles

Table 19- IS-Wireless use case scenario roles

Validation Group	Role in MORPHEMIC	Role description
Administrators	System administrator (MORPHEMIC administrator)	Installs and maintains the MORPHEMIC platform.
DevOps	Application model designer (CAMEL DevOps)	The person is able to define the application deployment requirements, application configuration and topology to include it in the CAMEL model.
DevOps	Metric model designer (CAMEL DevOps)	The person is able to define needed metrics required for the constraint and utility function. It is also able to extract needed metrics from the application and provide it to MORPHEMIC platform in the form of timeseries.

DevOps	Constraint model designer (CAMEL DevOps)	The person is able to design the constraint and utility function required for the target deployment scenario of the application.
DevOps	Test engineer	Deploys an application with a CAMEL model and verifies whether the deployment is operational.
Business Managers	Application evaluator	Verifies whether the 5G services deployed with help of MORPHEMIC satisfy his/her business and operational requirements.

5.1.6 Use case scenario definition

A virtualized RAN allows users to allocate computing resources across three distinct network entities. Furthermore, it may allow traffic rates to be reduced and latency requirements to be met at the same time. MORPHEMIC platform will thus act as an intelligent orchestrator for providing Polymorphic and Proactive Adaptation as well as access to hardware acceleration while at the same time being able to dynamically adapt deployment configurations.

The mechanism provided by MORPHEMIC can be grouped, depending on whether it is deployment or run-time phase. For the deployment phase the static optimization of the deployment on heterogeneous environments and forms (**Polymorphic Adaptation**), the performance level control (**Hardware Accelerator Support**) and a usable UI (**Uniform User Interface**) are considered an added value. For the run-time phase more dynamic benefits, i.e., **Proactive Adaptation**, to predict metric value behaviour, and **Self-Healing Capability**, to maintain the stability of the platform itself, will be important to support the application in the quickly changing context.

Two scenarios have been proposed:

- 1. the *static scenario* is focused on static deployment of the RAN; in other terms, according to the required infrastructural capabilities, MORPHEMIC will determine the best polymorphic application deployment configuration on edge and cloud.
- 2. the *dynamic scenario* is focused on the automatic modification of the deployment as the context changes. This scenario is the most complete one, since, along with the *polymorphic* features, it also exploits the feature of dynamic deployment modification and potentially *Proactive Adaptation*.

Use case Scenario ID	Name	Morphemic Scenarios included	Users
UC_SC_ISW_ Static_MOD	ISW_Static scenario CAMEL Model	 MOD_SC_MOR_01 (Set CAMEL model application requirements) MOD_SC_MOR_02 (Set CAMEL model application metrics) MOD_SC_MOR_03 (Set CAMEL model application constraints) MOD_SC_MOR_04 (Export CAMEL model) 	Administrators DevOps
UC_SC_ISW_ Static_DEP	ISW_Static scenario Deployment	 DEP_SC_MOR_01 (Set up and login) DEP_SC_MOR_02 (Add application) DEP_SC_MOR_03 Set cloud provider settings) DEP_SC_MOR_04 (Initial application deployment) 	Administrators DevOps

Table 20 - ISW static use case scenarios

Figure 9 - ISW static use case scenarios process diagram

Table 21 - ISW dynamic use case scenarios

Use case Scenario ID	Name	Scenarios included	Users
UC_SC_ISW_Dynamic _MOD	ISW_ Dynamic scenario CAMEL Model	 MOD_SC_MOR_01 (Set CAMEL model application requirements) MOD_SC_MOR_02 (Set CAMEL model application metrics) MOD_SC_MOR_03 (Set CAMEL model application constraints) MOD_SC_MOR_04 (Export CAMEL model) 	Administrators DevOps
UC_SC_ISW_Dynamic _DEP	ISW_ Dynamic scenario Deployment	 DEP_SC_MOR_01 (Set up and login) DEP_SC_MOR_02 (Add application) DEP_SC_MOR_03 (Set cloud provider settings) DEP_SC_MOR_04 (Initial application deployment) 	Administrators DevOps

UC_SC_ISW_Dynamic I _03 I A	ISW_ • Dynamic scenario Adaptation •	ADP_SC_MOR_01 (Application running) ADP_SC_MOR_02 (Application Sensors collection) ADP_SC_MOR_03 (Reasoning) ADP_SC_MOR_04 (Reconfiguration) ADP_SC_MOR_05 (Redeployment)	Administrators DevOps
-----------------------------------	--	---	--------------------------

Figure 10 - ISW dynamic use case scenarios process diagram

5.2 Use case Scenarios: E-Brain Science

5.2.1 Applications Domain

Within brain medical science, neuroscientists and clinicians acquire high-resolution images of the brain with MRI scanners under different protocols or sequences to assess brain tissues' properties. For example, the two most common MRI sequences are T1-weighted and T2-weighted scans provide information about the brain's structural anatomy and function. Using Diffusion-weighted imaging (DWI) and Diffusion Tensor imaging (DTI), the orientation and direction of white matter fiber tracts can be visualized and quantified. Neuroscientists use computational anatomy software in conjunction with structural MRI to determine the morphometric properties of brain structures. The computed anatomical features produced by the different software solutions provide quantitative data regarding structure and function in the brain, including the size, shape and volumes of gray matter structures. Neuroimaging data analysis tools are then used for the detection of diseases such as Alzheimer's, Parkinson's, stroke or epilepsy. For studies of healthy populations, neuroimaging statistical packages are also used to investigate the correlation between brain structure and certain physiological, cognitive and psychological characteristics, including motor skills, mood, and cognition. The tools

developed by CHUV are intended for this dual-use: clinically to aid in diagnosing neurological diseases and for research to further enhance our understanding of brain structure and function.

5.2.2 **Business needs**

Computation of brain characteristics demands handling large and complex data sets; and it also requires a series of algorithmic steps in separate software packages while keeping the input and output compatible and available at each step. Although tools are available, they are themselves complex and not easy to handle by clinicians. Due to this complexity, advanced neuroimaging tools are sometimes not used, resulting in missed opportunities. In other cases, simple workflows are implemented in each clinical centre with the customized tools. Therefore, this may lead to results based upon obsolete tools and outcomes that are not comparable between locations.

Due to the massive growth in imaging data volume, the diversity of protocols, and the progressively greater number of subjects being scanned, it is increasingly evident that one of the major challenges of running computations will be to do so in a timely manner and at a low computational cost and with the highest accuracy.

5.2.3 Business Performance and Key Performance Indicators

Table 22 - CHUV expected business benefits from the MORPHEMIC platform

Business performance Per roles				
MORPHEMIC	Use cases Scenarios Involved:			
platform administrator	UC SC CHUV ImageProc MOD, UC SC CHUV ImageProc DEP			
	UC_SC_CHUV_SPM_MOD, UC_SC_CHUV_SPM_DEP			
	UC_SC_CH	UV_FedML_MOD, UC_SC_CHUV_FedML_DEP		
In charge of administering the platform	Lab managers	5		
Business Performance	Speed	Immediate execution of CAMEL script on the underlying cloud platforms.		
	Cost	Administrators are able to lower operating costs associated with system upgrades, new hardware and software upgrades and maintenance.		
	Reliability	Reliability The system is monitored automatically scale without the need of intervention.		
	Flexibility	Flexible addition of processing steps in the brain neuroimaging workflow if the end user is requesting it.		
	Quality	High replicability of the infrastructure provided to the users (developer or end-users).		
Resource provider	Use cases Scenarios Involved			
	UC_SC_CHUV_ImageProc_DEP			
	UC_SC_CH	UV_SPM_DEP		
	UC_SC_CH	UV_FedML_DEP		
Responsible for	Public cloud providers: (AWS, Azure, Google Cloud, etc.), client's local data			
providing the computational resources?	centres (private clouds), Kesearch institution, hospitals, pharmaceutical labs.			
Business Performance	Speed	The polymorphic adaptation of the system will enable the system to respond more quickly to shifts in demand when users start new batch processing operations.		
	Cost	Polymorphic deployment allows researchers to have the ability to scale costs in accordance with their needs within a community cloud		

		where resources can be shared between labs, hospitals. Thanks to these capabilities, more scientists can simultaneously utilize the system.	
	Reliability	Admins may choose to deploy the application in the community cloud or on private cloud. However, the admin can prepare the deployment plan irrespective of the final destination.	
	Flexibility	Resources can be adapted to the complexity of the workflows.	
	Quality	Efficient use of allocated resources and decommission if not needed.	
Application provider	Use cases Sce	enarios Involved:	
	UC SC CH	JV ImageProc MOD, UC SC CHUV ImageProc DEP	
	UC SC CH	JV SPM MOD, UC SC CHUV SPM DEP	
	UC_SC_CH	JV_FedML_MOD, UC_SC_CHUV_FedML_DEP	
Responsible for	CHUV		
providing the application to be deployed?	Research labs	, clinical centres, pharma	
Business Performance	Speed	The developer can offer frequent enhancements or bug corrections to the end users due to the decreased deployment time.	
	Cost	With morphemic deployment and adaptation, it is easier to re-deploy the application after an upgrade, saving both time and money.	
	Reliability	The uniform deployment makes it possible to deploy the same application to future users, which is critical for Reliability, reproducibility and record-keeping.	
	Flexibility	Developers can easily add processes to brain neuroimaging workflows if their end users request it; MORPHEMIC will be responsible for ensuring the best execution plan and resource allocation.	
	Quality	Efficient use of allocated resources and decommission if not needed.	
Application end-user	Use cases Scenarios Involved:		
	UC_SC_CHUV_ImageProc_ADP		
	UC_SC_CH	JV_SPM_ADP	
	UC_SC_CHU	JV_FedML_ADP	
Final user of the application	Clinical resea	rchers and neuroscientists	
	Speed	As workflows are executed faster, more data can be analysed in a shorter amount of time, enabling researchers to engage in more scientific research.	
	Cost	Using community cloud resources to optimize lab workflow can improve productivity therefore minimize costs when using large scale imaging processing tasks.	
	Reliability	Process is reliable, repeatable. Every user has access to the same services and runs the same application, but with their own personal data.	
	Flexibility	Easy configuration from simple to complex workflow and configuration of the machine learning algorithms.	
	Quality	The quality of clinical trials depends on reproducible workflows and an extensive set of data. Workflows based on MORPHEMIC can provide automation to the processing of data, and can provide a higher level of quality than manual execution.	

Table 23 - CHUV KPIs metrics and targets from the MORPHEMIC platform

KPI metrics and targets			
Users			
Target	Scalability for a number of clinical researchers using the workflow 100.		
Data			
Target	Scalability for the amount of data and patients' records 10 000 records.		
Deployment automation strategies			
Target	5 pre-processing and data analyses workflow integrated: image conversion, image normalization, brain maps creation, brain atlas creation, neuromorphometrics computation.		

5.2.4 Applications to be deployed

The main functionalities that E-Brain Science use case will provide are:

- **image pre-processing pipeline**, which consists in providing standardized workflow for pre-processing neuroimaging data. The users will be able to select and configure neuroimaging workflows from data conversion, in order to segment the images and extract the brain features
- **SPM on web** provides a web tool for sharing and visualization of image analysis conducted with SPM (Statistical Parametric Mapping), the most popular open-source package for neuroimaging analysis.
- **federated machine learning** consists in providing an innovative system that wide users (clinicians, neuroscientists, epidemiologists) can access and use to analyse clinical and research data without moving them from the hospital or private cloud servers where they reside and without infringing on patient privacy.

5.2.5 Use case scenario roles

Table 24 - CHUV validation roles for the MORPHEMIC platform

Validation Group	Role in MORPHEMIC	Role description
Administrators	Administrator (Lab manager)	Responsible that the resources (compute and data storage) are available. Add and manage users (developer and end users).
DevOps	Application developer (Clinical researchers, neuroscientists)	Model designers and developers configure and modify the workflows, add tasks, remove tasks, and implement new methods (new neuroimaging application of machine learning methods).
Application end-user	Application end-user (Clinical researchers, neuroscientists. Clinicians, pharma, students)	Upload his/her data, Configure and run workflow download the results.

5.2.6 Use case scenario Definitions

Our research set out to develop neuroimaging methods that exploit current technologies, including dockerization, in order to compute brain characteristics, organize large complex datasets efficiently and logically, and maintain input and output in synchrony.

E-Brain Science's architecture is conceived to advance the fundamental and digital knowledge on healthy brain aging and neurocognitive disorders. Specifically, the provided functionalities will be:

- 1. establish a framework for federating clinical data within and across data sources (*hospitals*, *clinics* and *cohorts*)
- 2. develop benchmarking technology that respects anonymity requirements
- 3. evaluate AI based diagnostic

4. derive biological signatures of brain diseases.

More in general, the use case concerns the analysis of a big amount of data coming from different data sources. As well as any healthcare data, these data are often *sensitive data* with stringent requirements in terms of security and anonymization. MORPHEMIC will not manage these aspects, but it could be possible to deploy an application covering these requirements. MORPHEMIC contributes to the delivery of the results and data as expected by deploying resources, managing workloads, monitoring task status, and assessing capacity needs to support the provision of resources as required. MORPHEMIC contributes to the improvement of data reliability by running multiple jobs concurrently and by accounting for the relationship between the processing steps. MORPHEMIC allows the application of a huge number of neuroimaging tools on a large number of samples rapidly, easily and precisely.

Table 25 - CHUV image preproc	cessing use case scenarios
-------------------------------	----------------------------

Use case Scenario ID	Name	MORPHEMIC usage Scenarios	Users
UC_SC_CHUV_ ImageProc_MOD	CHUV_ ImageProc scenario CAMEL Model	 MOD_SC_MOR_01 (Set CAMEL model application requirements) MOD_SC_MOR_02 (Set CAMEL model application metrics) MOD_SC_MOR_03 (Set CAMEL model application constraints) MOD_SC_MOR_04 Export CAMEL model) 	Administrators DevOps
UC_SC_CHUV_ ImageProc_DEP	CHUV_ ImageProc scenario Deployment	 DEP_SC_MOR_01 (Set up and login) DEP_SC_MOR_02 (Add application) DEP_SC_MOR_03 (Set cloud provider settings) DEP_SC_MOR_04 (Initial application deployment) 	Administrators DevOps
UC_SC_CHUV_ ImageProc_ADP	CHUV_ ImageProc scenario Adaptation	 Scenarios 9 (Application running) ADP_SC_MOR_02 (Application Sensors collection) ADP_SC_MOR_03 (Reasoning) ADP_SC_MOR_04 (Reconfiguration) ADP_SC_MOR_05 (Redeployment) 	Application end-user

Figure 12 - CHUV image preprocessing use case scenarios process diagram

Table 26 - CHUV SPM on web use case scenarios

Use case Scenario ID	Name	M MORPHEMIC usage Scenarios	Users
UC SC CHUV	CHUV SPM	MOD SC MOR 01 (Set CAMEL	Administrators
SPM_MOD	scenario CAMEL	model application requirements) • MOD_SC_MOR_02 (Set CAMEL	DevOps
	Model	model application metrics)	
		• MOD_SC_MOR_03 (Set CAMEL model application constraints)	
		• MOD_SC_MOR_04 (Export CAMEL model)	
UC_SC_CHUV_SPM DEP	CHUV_SPM scenario	• DEP_SC_MOR_01 (Set up and login)	Administrators DevOps
-	Deployment	• DEP_SC_MOR_02 (Add	1
		• DEP SC MOR 03 (Set cloud	
		provider settings)	
		• DEP_SC_MOR_04 (Initial application deployment)	
UC_SC_CHUV_SPM	CHUV_SPM	• ADP_SC_MOR_01 (Application	Application end-user
	Adaptation	 ADP_SC_MOR_02 (Application Sensors collection) 	
		 ADP_SC_MOR_03 (Reasoning) 	

		 ADP_SC_MOR_04 (Reconfiguration) ADP_SC_MOR_05 (Redeployment) 	
UC_SC_CHUV_SPM	CHUV_SPM		
_04	Self-healing		

Figure 13 - CHUV SPM on web use case scenarios process diagram

Table 27 - CHUV federated machine learning use case scenarios

Use case Scenario ID	Name	MORPHEMIC usage Scenarios included	Users
UC_SC_CHUV_ FedML_MOD	CHUV_FedML scenario CAMEL Model	 MOD_SC_MOR_01 (Set CAMEL model application requirements) MOD_SC_MOR_02 (Set CAMEL model application metrics) MOD_SC_MOR_03 (Set CAMEL model application constraints) MOD_SC_MOR_04 (Export CAMEL model) 	Administrators DevOps
UC_SC_CHUV_ FedML_DEP	CHUV_FedML scenario Deployment	 DEP_SC_MOR_01 (Set up and login) DEP_SC_MOR_02 (Add application) DEP_SC_MOR_03 (Set cloud provider settings) 	Administrators DevOps

		• DEP_SC_MOR_04 (Initial application deployment)	
UC_SC_CHUV_ FedML_ADP	CHUV_FedML scenario Adaptation	 ADP_SC_MOR_01 (Application running) ADP_SC_MOR_02 (Application Sensors collection) ADP_SC_MOR_03 (Reasoning) ADP_SC_MOR_04 (Reconfiguration) ADP_SC_MOR_05 (Redeployment) 	Application end-user

Figure 14 - CHUV federated machine learning scenarios process diagram

5.3 Use case Scenarios: Computational Fluid Dynamics simulation

5.3.1 Applications Domain

ICON's Computational Fluid Dynamics (CFD) tools are used to compute flow quantities in a wide range of industrial applications, like aerodynamics in the automotive and aerospace industry, free surface flows, species transport, multi component flows as well as thermal simulations.

5.3.2 **Business needs**

There are multiple challenges for deploying a CFD application on the cloud. There are significant changes in the runtime of a simulation which can be few minutes on a small number of cores up to multiple days on a large number of cores. The three sub cases of the use case capture these demands. Another challenge is the usage of different hardware architectures like on the CPUs there are differences by using Intel, AMD or ARM. The next challenge in difference to permanent running web applications is the request of compute power on demand.

5.3.3 Business Performance and Key Performance Indicators

Table 28 - ICON expected business benefits from the MORPHEMIC platform

Business performance Per roles		
MORPHEMIC	Use cases Scena	arios Involved:
platform administrator	UC_SC_ICON	LowFidelity_MOD, UC_SC_ICON_LowFidelity_DEP,
	UC_SC_ICON	_MediumFidelity_MOD, UC_SC_ICON_MediumFidelity
	UC SC ICON	HighFidelity MOD, UC SC ICON HighFidelity DEP
In charge of	ICON	
administering the platform		
Business Performance	Speed	Quick installation, short turnaround time to be online with your application.
	Cost	Efficient due to reduced administration times.
	Reliability	Platform has high availability.
	Flexibility	Flexible to choose different cloud providers and resources.
	Quality	Minimise administration overhead through standardised, repeatable and automated processes.
Resource provider	Use cases Scena	arios Involved
	UC_SC_ICON	_LowFidelity_DEP
	UC_SC_ICON	_MediumFidelity_DEP
	UC_SC_ICON	_HighFidelity_DEP
Responsible for	ICON, ICON's	iconCFD Platform clients, HPC centres
computational		
resources?		
Business Performance	Speed	Fast deployment in multicloud environments, hardware is used efficiently.
	Cost	Cost savings by optimal choice of cloud hardware on different
	D 11 1 11	cloud providers.
	Reliability	Virtual machines are started on demand, in time.
	Flexibility	New instances are added automatically.
	Quality	Resources (VMs) are handled dynamically.
Application provider	Use cases Scena	arios Involved:
	UC_SC_ICON	_LowFidelity_MOD, UC_SC_ICON_LowFidelity_DEP,
	DEP.	_MediumFidenty_MOD, OC_SC_ICON_MediumFidenty
	UC SC ICON	HighFidelity MOD, UC SC ICON HighFidelity DEP
Responsible for	ICON	
providing the		
application to be		
deployed? Dusiness Derformance	Smood	Danid danlayment of iconCED Platform annihistion. The
Dusiness remominance	speed	computing resources (VMs) are optimized on the fly dynamically
		based on the current load and projected simulation loads.
	Cost	iconCFD Platform is assisted in obtaining the resources
		proactively to minimize cost and optimize the cost-to-simulation-
		time ratio based on end-user constraints. Enables access to
		reduced operational/maintenance and hosting costs and hence

	_	
		potential for greater profit generation per simulation sold by ICON.
	Reliability	Increased reliability of iconCFD Platform application offered to ICON customers (through ability to adapt resources more dynamically to achieve results in quantifiable timeframes for customers). High availability of resources due to ability to switch provider if one service is down.
	Flexibility	Flexible simulation requests are solved on demand meeting this challenge of dynamically diverse simulation requirements. For example, an engineer might have to run Digital Engineering Experiments with 1000s of short simulations which only take a few computer cores and then a smaller number of simulations taking days on 1000s of computer cores.
	Quality	Quality benefits include a more repeatable, predictable and consistent solution to be provided in every deployment, to a defined timescale and measurable quality. Further benefits include high availability and stable processes and better dynamic exploitation of multiple cloud environments in public and private modes.
	TI C	• • • •
Application end-user	Use cases Scena	arios Involved:
Application end-user	Use cases Scena UC SC ICON	arios Involved: LowFidelity ADP,
Application end-user	USE CASES SCEN	arios Involved: _LowFidelity_ADP, _MediumFidelity_ADP.
Application end-user	USE CASES SCEN UC_SC_ICON UC_SC_ICON UC_SC_ICON	arios Involved: _LowFidelity_ADP, _MediumFidelity_ADP, _HighFidelity_ADP
Application end-user Final user of the application	USE CASES SCEN UC_SC_ICON UC_SC_ICON UC_SC_ICON ICON's iconCF	arios Involved: _LowFidelity_ADP, _MediumFidelity_ADP, _HighFidelity_ADP D Platform clients
Application end-user Final user of the application	USE CASES SCENA UC_SC_ICON UC_SC_ICON UC_SC_ICON ICON's iconCF	arios Involved: _LowFidelity_ADP, _MediumFidelity_ADP, _HighFidelity_ADP D Platform clients Product engineering in quantifiable timeframes. Speed is increased from having options of simulation workers on demand via iconCFD Platform.
Application end-user Final user of the application	USE CASES SCENA UC_SC_ICON UC_SC_ICON UC_SC_ICON ICON's iconCF Speed	arios Involved: _LowFidelity_ADP, _MediumFidelity_ADP, _HighFidelity_ADP D Platform clients Product engineering in quantifiable timeframes. Speed is increased from having options of simulation workers on demand via iconCFD Platform. Cheaper digital engineering by optimal utilization of the most cost-effective cloud infrastructures via iconCFD Platform.
Application end-user Final user of the application	Use cases Scena UC_SC_ICON UC_SC_ICON UC_SC_ICON ICON's iconCF Speed Cost Reliability	arios Involved: _LowFidelity_ADP, _MediumFidelity_ADP, _HighFidelity_ADP D Platform clients Product engineering in quantifiable timeframes. Speed is increased from having options of simulation workers on demand via iconCFD Platform. Cheaper digital engineering by optimal utilization of the most cost-effective cloud infrastructures via iconCFD Platform. Increased reliability of iconCFD Platform application through ability to adapt resources more dynamically to achieve results in quantifiable timeframes.
Application end-user Final user of the application	Use cases Scena UC_SC_ICON UC_SC_ICON ICON's iconCF Speed Cost Reliability Flexibility	arios Involved: _LowFidelity_ADP, _MediumFidelity_ADP, _HighFidelity_ADP D Platform clients Product engineering in quantifiable timeframes. Speed is increased from having options of simulation workers on demand via iconCFD Platform. Cheaper digital engineering by optimal utilization of the most cost-effective cloud infrastructures via iconCFD Platform. Increased reliability of iconCFD Platform application through ability to adapt resources more dynamically to achieve results in quantifiable timeframes. Increased flexibility from having access to multiple cloud environments via iconCFD Platform.
Application end-user Final user of the application	USE CASES SCENA UC_SC_ICON UC_SC_ICON ICON'S iconCF Speed Cost Reliability Flexibility Quality	arros Involved: LowFidelity_ADP, MediumFidelity_ADP D Platform clients Product engineering in quantifiable timeframes. Speed is increased from having options of simulation workers on demand via iconCFD Platform. Cheaper digital engineering by optimal utilization of the most cost-effective cloud infrastructures via iconCFD Platform. Increased reliability of iconCFD Platform application through ability to adapt resources more dynamically to achieve results in quantifiable timeframes. Increased flexibility from having access to multiple cloud environments via iconCFD Platform. Quality benefits include a more repeatable, predictable and consistent solution to be provided in every deployment, to a defined timescale and measurable quality. Stable simulation

Table 29 - ICON KPIs metrics and targets from the MORPHEMIC platform

Reduction	of platform.iconcfd.com maintenance cost.	
Target	Reduction of platform.iconcfd.com maintenance cost by 30%.	
Reduction	of cost, or increase in number of simulations	
Target	Reduction of cost, or increase in number of simulations at equal cost of 20%.	
Seamless throughput scalability to higher number of simultaneous end-users.		

Target	Seamless throughput scalability to higher number of simultaneous end-users.	
--------	---	--

5.3.4 Use cases scenario roles

Table 30 - ICON validation roles for the MORPHEMIC platform

Validation Group	Role in MORPHEMIC	Role description
DevOps	Application developer (MORPHEMIC developer)	CAMEL
Administrators	System Administrator (MORPHEMIC administrator)	Install, setup Morphemic platform
DevOps	Application tester (MORPHEMIC tester)	Test deployments
Business Managers	Application evaluator (ICON CTO)	Evaluates application and platform

5.3.5 Applications to be deployed

The application will contain a run-manager (scheduler) which will use a "FIFO" approach with three queues, one for each scenario. The iconCFD Platform frontend is responsible for the case creation and its submission via the scheduler/run-manager. The software for the workers will be packaged in a Docker or singularity container: Figure 19 shows a schematic view of the use case scenario.

Figure 15 - ICON Architecture

5.3.6 Use case scenario Definitions

ICON aims to ensure that the users of their web-based framework, iconCFD Platform, get their results within a timeframe agreed in their SLA (for example 24 hours) and at a minimum cost. On this sense,

MORPHEMIC should be able to pro-actively adapt the number and type of workers to make sure that each job will be completed within the specified time, for each scenario. The simulations can be run on x86-64 (AMD, INTEL), or 64-bit Arm architectures of varying number of cores, or on clusters of these. The best data storage strategy needs to be evaluated, if it can be for instance local NFS storage, AWS S3 type data lake storage, **MORPHEMIC** will mount and manage storage and/or hybrid storage with local cache in VMs. This depends on the data volume, the access frequency of the different types of simulations.

Specifically, MORPHEMIC will support the deployment of three CFD scenarios different in terms of requested resources.

• Large - high-fidelity simulations are very demanding in terms of resources, including memory and network bandwidth and typically require an HPC cluster (128 - 2000+) with high-speed interconnect.

• Medium - medium-fidelity simulations can be run on high core count (16-128) shared-memory machines or on HPC clusters.

• **Small - low-fidelity simulations** can be run on single workers with few compute cores (<16).

Table 31 - ICON low fidelity use case scenarios

Use case Scenario ID	Name	MORPHEMIC usage Scenarios	Users
UC_SC_ICON_ LowFidelity_MOD	ICON_ LowFidelity scenario CAMEL Model	 MOD_SC_MOR_01 (Set CAMEL model application requirements) MOD_SC_MOR_02 (Set CAMEL model application metrics) MOD_SC_MOR_03 Set CAMEL model application constraints) MOD_SC_MOR_04 (Export CAMEL model) 	Administrators DevOps
UC_SC_ICON_ LowFidelity_DEP	ICON_ LowFidelity scenario Deployment	 DEP_SC_MOR_01 (Set up and login) DEP_SC_MOR_02 (Add application) DEP_SC_MOR_03 (Set cloud provider settings) DEP_SC_MOR_04 (Initial application deployment) 	Administrators DevOps
UC_SC_ICON_ LowFidelity_ADP	ICON_ LowFidelity scenario Adaptation	 ADP_SC_MOR_01 (Application running) ADP_SC_MOR_02 (Application Sensors collection) ADP_SC_MOR_03 (Reasoning) ADP_SC_MOR_04 (Reconfiguration) ADP_SC_MOR_05 (Redeployment) 	Application end-user

Page 50

Figure 16- ICON LowFidelity scenario process diagram

Table 32 - ICON medium fidelity use case scenarios

Use case Scenario ID	Name	Morphemic Scenarios included	Users
UC_SC_ICON_	ICON_	• MOD SC MOR 01 (Set	Administrators
MediumFidelity_MOD	MediumFidelity scenario CAMEL Model	 MOD_SC_MOR_03 (Set CAMEL model application requirements) MOD_SC_MOR_02 (Set CAMEL model application metrics) MOD_SC_MOR_03 (Set CAMEL model application constraints) MOD_SC_MOR_04 (Export CAMEL model) 	DevOps
UC_SC_ICON_ MediumFidelity _DEP	ICON_ MediumFidelity scenario Deployment	 DEP_SC_MOR_01 (Set up and login) DEP_SC_MOR_02 (Add application) DEP_SC_MOR_03 (Set cloud provider settings) DEP_SC_MOR_04 (Initial application deployment) 	Administrators DevOps
UC_SC_ICON_ MediumFidelity _ADP	ICON_ MediumFidelity scenario Adaptation	 ADP_SC_MOR_01 (Application running) ADP_SC_MOR_02 (Application Sensors collection) 	Application end-user

	 ADP_SC_MOR_03 (Reasoning) ADP_SC_MOR_04 (Reconfiguration) ADP_SC_MOR_05 (Redeployment) 	
--	--	--

Figure 17- ICON Medium fidelity use case scenarios process diagram

Table 33 - ICON high fidelity use case scenarios

Use case Scenario ID	Name	Morphemic Scenarios included	Users
UC_SC_ICON_ HighFidelity_MOD	ICON_ HighFidelity scenario CAMEL Model	 MOD_SC_MOR_01 (Set CAMEL model application requirements) MOD_SC_MOR_02 (Set CAMEL model application metrics) MOD_SC_MOR_03 (Set CAMEL model application constraints) MOD_SC_MOR_04 (Export CAMEL model) 	Administrators DevOps
UC_SC_ICON_ HighFidelity DEP	ICON_ HighFidelity	• DEP_SC_MOR_01 (Set up and login)	Administrators DevOps

	scenario Deployment	 DEP_SC_MOR_02 (Add application) DEP_SC_MOR_03 (Set cloud provider settings) DEP_SC_MOR_04 (Initial application deployment) 	
UC_SC_ICON_ MediumFidelity _ADP	ICON_ HighFidelity scenario Adaptation	 ADP_SC_MOR_01 (Application running) ADP_SC_MOR_02 (Application Sensors collection) ADP_SC_MOR_03 (Reasoning) ADP_SC_MOR_04 (Reconfiguration) ADP_SC_MOR_05 (Redeployment) 	Application end-user

Figure 18 - ICON high fidelity use case scenarios process diagram

6 Target infrastructure

The target infrastructure is based on requirements of use cases discussed in details in D6.1 Industrial requirements analysis. Unlike traditional deployment models, MORPHEMIC features the ability to dynamically change application form (container, serverless, VMs...) and provisioning environment (cloud, fog, edge...) based on current and predicted applications behaviour, thus maximizing benefits for the application. Listed below are the use cases scenarios assigned to the MORPHEMIC supported target infrastructure.

Table 34 - Use cases scenarios assigned to MORPHEMIC supported target infrastructure

Target Infrastructure	Use case Scenarios: Virtualized base station for 5G cloud-RAN	Use case Scenarios: E-Brain Science	Use case Scenarios: Computational Fluid Dynamics simulation
Public Cloud		SPMonWeb Scenarios Image Pre-processing Scenarios	
Private Cloud		Image Pre-processing Scenarios	High-fidelity Scenarios Med-fidelity Scenarios Low-fidelity Scenarios
Hybrid Cloud	Static Scenarios	Federated ML Scenarios	High-fidelity Scenarios

	Dynamic Scenarios		Med-fidelity Scenarios Low-fidelity Scenarios
Edge	Static Scenarios Dynamic Scenarios		
Bare Metal	Static Scenarios Dynamic Scenarios		
Hardware Accelerators	Static Scenarios Dynamic Scenarios	Image Pre-processing Scenarios	
Containers	Static Scenarios Dynamic Scenarios	Image Pre-processing Scenarios Federated ML Scenarios	High-fidelity Scenarios Med-fidelity Scenarios Low-fidelity Scenarios
Virtual Machines	Static Scenarios Dynamic Scenarios	Image Pre-processing Scenarios SPMonWeb Scenarios Federated ML Scenarios	High-fidelity Scenarios Med-fidelity Scenarios Low-fidelity Scenarios
Serverless		SPMonWeb Scenarios	
НРС			Med-fidelity Scenarios Low-fidelity Scenarios

Figure 19 - Target Infrastructure

D6.3 Use cases definition and preparation

Each use case scenario, as well as MORPHEMIC releases, updates and functionalities, will be tested and validated using MORPHEMIC testbed. A detailed description of the software, set up tools and installation procedure, initial use case testing performed is provided in D5.6 Testbed installation and configuration. The figure below presents the architecture of the testbed: the interactions happening within the MORPHEMIC testbed between the users, the lead node, the partner's MORPHEMIC instances and the deployment nodes

Figure 20 - Architecture of the testbed infrastructure

7 Requirements

7.1 Requirement for the MORPHEMIC Usage scenarios

Table 35 - Requirements for the MORPHEMIC Usage scenarios

Requirement ID	Name	MORPHEMIC
MOR-SE.1	Polymorphic Environments: Cloud	MOD_SC_MOR_01 MOD_SC_MOR_02 MOD_SC_MOR_03 MOD_SC_MOR_04 DEP_SC_MOR_01 DEP_SC_MOR_02 DEP_SC_MOR_03 DEP_SC_MOR_04
MOR-SE.2	Polymorphic Environments: Hybrid Clouds	MOD_SC_MOR_01 MOD_SC_MOR_02 MOD_SC_MOR_03 MOD_SC_MOR_04 DEP_SC_MOR_01 DEP_SC_MOR_02 DEP_SC_MOR_03 DEP_SC_MOR_04
MOR-SE.3	Polymorphic Environments: Multi-Cloud	MOD_SC_MOR_01 MOD_SC_MOR_02 MOD_SC_MOR_03 MOD_SC_MOR_04 DEP_SC_MOR_01 DEP_SC_MOR_02 DEP_SC_MOR_03 DEP_SC_MOR_04
MOR-SE.4	Polymorphic Environments: Fog	MOD_SC_MOR_01 MOD_SC_MOR_02 MOD_SC_MOR_03 MOD_SC_MOR_04 DEP_SC_MOR_01 DEP_SC_MOR_02 DEP_SC_MOR_03 DEP_SC_MOR_04
MOR-SE.5	Polymorphic Environments: Edge	MOD_SC_MOR_01 MOD_SC_MOR_02 MOD_SC_MOR_03 MOD_SC_MOR_04 DEP_SC_MOR_01 DEP_SC_MOR_02 DEP_SC_MOR_03 DEP_SC_MOR_04
MOR-SE.6	Polymorphic Environments: bare metal	MOD_SC_MOR_01 MOD_SC_MOR_02

		MOD_SC_MOR_03 MOD_SC_MOR_04 DEP_SC_MOR_01 DEP_SC_MOR_02 DEP_SC_MOR_03 DEP_SC_MOR_04
MOR-SE.7	Polymorphic Environments: HPC	MOD_SC_MOR_01 MOD_SC_MOR_02 MOD_SC_MOR_03 MOD_SC_MOR_04 DEP_SC_MOR_01DE P_SC_MOR_02 DEP_SC_MOR_03 DEP_SC_MOR_04
MOR-SE.8	Polymorphic Environments: hardware accelerators	MOD_SC_MOR_01 MOD_SC_MOR_02 MOD_SC_MOR_03 MOD_SC_MOR_04 DEP_SC_MOR_01 DEP_SC_MOR_02 DEP_SC_MOR_03 DEP_SC_MOR_04
MOR-SE.9	Polymorphic Environments: FPGA	MOD_SC_MOR_01 MOD_SC_MOR_02 MOD_SC_MOR_03 MOD_SC_MOR_04 DEP_SC_MOR_01DE P_SC_MOR_02 DEP_SC_MOR_03 DEP_SC_MOR_04
MOR-SE.10	More polymorphic environments	MOD_SC_MOR_01 MOD_SC_MOR_02 MOD_SC_MOR_03 MOD_SC_MOR_04 DEP_SC_MOR_01 DEP_SC_MOR_02 DEP_SC_MOR_03 DEP_SC_MOR_04
MOR-SA.1	Polymorphic application forms: VM	MOD_SC_MOR_01 MOD_SC_MOR_02 MOD_SC_MOR_03 MOD_SC_MOR_04 DEP_SC_MOR_01 DEP_SC_MOR_02 DEP_SC_MOR_03 DEP_SC_MOR_04
MOR-SA.2	Polymorphic application forms: containers	MOD_SC_MOR_01 MOD_SC_MOR_02

		MOD_SC_MOR_03 MOD_SC_MOR_04 DEP_SC_MOR_01 DEP_SC_MOR_02 DEP_SC_MOR_03 DEP_SC_MOR_04
MOR-SA.3	Polymorphic application forms: serverless	MOD_SC_MOR_01 MOD_SC_MOR_02 MOD_SC_MOR_03 MOD_SC_MOR_04 DEP_SC_MOR_01 DEP_SC_MOR_02 DEP_SC_MOR_03 DEP_SC_MOR_04
MOR-SA.4	More polymorphic application forms	MOD_SC_MOR_01 MOD_SC_MOR_02 MOD_SC_MOR_03 MOD_SC_MOR_04 DEP_SC_MOR_01 DEP_SC_MOR_02 DEP_SC_MOR_03 DEP_SC_MOR_04
MOR-CON.1	Pre-configure multiple deployment configurations	MOD_SC_MOR_01 MOD_SC_MOR_02 MOD_SC_MOR_03 MOD_SC_MOR_04
MOR-SH.1	Real time infrastructure performance monitoring	ADP_SC_MOR_01 ADP_SC_MOR_02 ADP_SC_MOR_03 ADP_SC_MOR_04 ADP_SC_MOR_05
MOR-SH.2	Real time applications performance monitoring	ADP_SC_MOR_01 ADP_SC_MOR_02 ADP_SC_MOR_03 ADP_SC_MOR_04 ADP_SC_MOR_05
MOR-SH.3	Self-Healing mechanism	ADP_SC_MOR_01 ADP_SC_MOR_02 ADP_SC_MOR_03 ADP_SC_MOR_04 ADP_SC_MOR_05
MOR-AD.1	Proactive Adaptation	ADP_SC_MOR_01 ADP_SC_MOR_02 ADP_SC_MOR_03 ADP_SC_MOR_04 ADP_SC_MOR_05
MOR-AD.2	Prediction capabilities on applications	ADP_SC_MOR_01 ADP_SC_MOR_02 ADP_SC_MOR_03 ADP_SC_MOR_04 ADP_SC_MOR_05

MOR-AD.3	Prediction capabilities on infrastructures	ADP_SC_MOR_01 ADP_SC_MOR_02 ADP_SC_MOR_03 ADP_SC_MOR_04 ADP_SC_MOR_05
MOR-MD.1	Application crawling	ADP_SC_MOR_01 ADP_SC_MOR_02 ADP_SC_MOR_03 ADP_SC_MOR_04 ADP_SC_MOR_05
MOR-MD.2	Application profiling	ADP_SC_MOR_01 ADP_SC_MOR_02 ADP_SC_MOR_03 ADP_SC_MOR_04 ADP_SC_MOR_05
MOR-OP.1	Optimization of Resources	MOD_SC_MOR_01 MOD_SC_MOR_02 MOD_SC_MOR_03 MOD_SC_MOR_04 DEP_SC_MOR_01 DEP_SC_MOR_02 DEP_SC_MOR_03 DEP_SC_MOR_04

7.2 Requirement for the MORPHEMIC Use case scenarios

Table 36 - Requirements for the MORPHEMIC Use case scenarios

ID	Name	Use case Scenario
UC-C-SE.1	Support for non-virtualized components	UC_SC_ISW_Static_MOD UC_SC_ISW_Dynamic_MOD
		UC_SC_CHUV_ImageProc_MOD UC_SC_CHUV_SPM_MOD UC_SC_CHUV_FedML_MOD
UC-C-SE.2	Multi-site deployment	UC_SC_ISW_Static_MOD UC_SC_ISW_Dynamic_MOD
		UC_SC_ISW_Static_DEP UC_SC_ISW_Dynamic_DEP
		UC_SC_CHUV_ImageProc_MOD UC_SC_CHUV_SPM_MOD UC_SC_CHUV_FedML_MOD
		UC_SC_CHUV_ImageProc_DEP UC_SC_CHUV_SPM_DEP UC_SC_CHUV_FedML_DEP
UC-C-SE.3	Support for GPU	UC_SC_CHUV_ImageProc_MOD UC_SC_CHUV_SPM_MOD UC_SC_CHUV_FedML_MOD

		UC_SC_CHUV_ImageProc_DEP UC_SC_CHUV_SPM_DEP UC_SC_CHUV_FedML_DEP
		UC_SC_ICON_LowFidelity_MOD UC_SC_ICON_MediumFidelity_MOD UC_SC_ICON_HighFidelity_MOD
		UC_SC_ICON_LowFidelity_DEP UC_SC_ICON_MediumFidelity_DEP UC_SC_ICON_HighFidelity_DEP
UC-C-UF.1	Targeted deployment: network capability	UC_SC_ISW_Dynamic_MODUC_SC_ ISW_Dynamic_ADP
		UC_SC_CHUV_ImageProc_MOD UC_SC_CHUV_SPM_MOD UC_SC_CHUV_FedML_MOD
		UC_SC_CHUV_ImageProc_ADP UC_SC_CHUV_SPM_ADP
UC-C-UF.2	Targeted deployment: price	UC_SC_ISW_Dynamic_ADP
		UC_SC_ICON_LowFidelity_ADP UC_SC_ICON_MediumFidelity_ADP UC_SC_ICON_HighFidelity_ADP
UC-C-UF.3	Targeted deployment: packaging	UC_SC_ISW_Static_MOD
		UC_SC_ISW_Dynamic_MOD UC_SC_CHUV_ImageProc_MOD UC_SC_CHUV_SPM_MOD UC_SC_CHUV_FedML_MOD
		UC_SC_ICON_LowFidelity_MOD UC_SC_ICON_MediumFidelity_MOD UC_SC_ICON_HighFidelity_MOD
UC-C-UF.4	Geographical awareness	UC_SC_ISW_Static_MOD
		UC_SC_ISW_ Dynamic_MOD
		UC_SC_CHUV_ImageProc_MOD UC_SC_CHUV_SPM_MOD UC_SC_CHUV_FedML_MOD
UC-C-UF.5	Targeted deployment: computing power	UC_SC_ISW_Static_MOD
		UC_SC_ISW_ Dynamic_MOD
		UC_SC_ICON_LowFidelity_MOD UC_SC_ICON_MediumFidelity_MOD UC_SC_ICON_HighFidelity_MOD
UC-C-SEC.1	Support for traffic isolation	UC_SC_ISW_Static_MOD UC_SC_ISW_Dynamic_MOD

		UC_SC_CHUV_ImageProc_MOD
		UC_SC_CHUV_SPM_MOD
UC-C-SEC 2	Support for secure communications	UC_SC_ISW_Static_MOD
UC-C-SEC.2	Support for secure communications	UC_SC_ISW_Dynamic_MOD
		UC SC CHUV ImageProc MOD
		UC_SC_CHUV_SPM_MOD
		UC_SC_CHUV_FedML_MOD
UC-C-SEC.3	Support for security related applications	UC_SC_ISW_ Static_DEP
		UC_SC_ISW_Dynamic_DEP
		UC_SC_CHUV_IMageProc_DEP
		UC_SC_CHUV_SFM_DEF
UC-1-SE 1	Platform awareness: DPDK	UC SC ISW Static DEP
00-1-52.1	Thatform awareness. Dr DK	UC SC ISW Dynamic DEP
UC-1-SE.2	Platform awareness: CPU pinning	UC SC ISW Static DEP
		UC_SC_ISW_ Dynamic_DEP
UC-1-SE.3	Support for redundancy	UC_SC_ISW_Static_DEP
		UC_SC_ISW_Dynamic_DEP
	Support for Foult Management	LIC SC ISW Static DEP
UC-1-5E.4	Support for Fault Management	UC_SC_ISW_Static_DEF
UC-1-SE.5	Support for Configuration Management	UC_SC_ISW_ Static_DEP
		UC_SC_ISW_ Dynamic _DEP
UC-1-SE.6	Support for Accounting Management	UC_SC_ISW_Static_DEP
		UC_SC_ISW_Dynamic_DEP
UC-1-SE.7	Support for Performance Management	UC_SC_ISW_Static_DEP
		UC_SC_ISW_Dynamic_DEP
UC-1-SE.8	Support for Security Management	UC_SC_ISW_Static_DEP UC_SC_ISW_Dynamic_DEP
UC-1-UF 1	Support for low latency in terms of deployment	UC SC ISW Static MOD
00-1-01.1	time	UC SC ISW Dynamic MOD
		UC SC ISW Static DEP
		UC_SC_ISW_ Dynamic _DEP
UC-1-UF.2	Targeted deployment: latency between the	UC_SC_ISW_Static_MOD
	deployed components	UC_SC_ISW_Dynamic _MOD
		UC_SC_ISW_Static_DEP
		UC_SC_ISW_Dynamic_DEP
UC-I-AD.I	Dynamic deployment configuration	UC_SC_ISW_Dynamic_ADP
UC-I-AD.2	Live migration	UC_SC_ISW_Dynamic_ADP
UC-2-SE.1	Support for ProActive	UC_SC_CHUV_IMageProc_MOD
		UC_SC_CHUV_FedML_MOD
		UC_SC_CHUV ImageProc DEP
		UC_SC_CHUV_SPM_DEP
		UC_SC_CHUV_FedML_DEP
UC-2-SE.2	Support for private execution environment	UC_SC_CHUV_ImageProc_MOD
		UC_SC_CHUV_SPM_MOD

		UC_SC_CHUV_FedML_MOD
		UC SC CHUV ImageProc DEP
		UC SC CHUV SPM DEP
		UC_SC_CHUV_FedML_DEP
UC-2-SE.3	Support for Master orchestrator	UC_SC_CHUV_ImageProc_MOD
		UC_SC_CHUV_SPM_MOD
		UC_SC_CHUV_FedML_MOD
		UC_SC_CHUV_ImageProc_DEP
		UC_SC_CHUV_SPM_DEP
		UC_SC_CHUV_FedML_DEP
UC-3-SE.1	Connection to HPC centres	UC_SC_ICON_LowFidelity_MOD
		UC_SC_ICON_MediumFidelity_MOD
		OC_SC_ICON_HighFidenty_MOD
		UC SC ICON LowFidelity DEP
		UC SC ICON MediumFidelity DEP
		UC_SC_ICON_HighFidelity_DEP
UC-3-SE.2	Management of workers	UC_SC_ICON_LowFidelity_MOD
		UC_SC_ICON_MediumFidelity_MOD
		UC_SC_ICON_HighFidelity_MOD
		UC_SC_ICON_LowFidelity_DEP
		UC_SC_ICON_Medium Identy_DEF
UC-3-SA 1	Targeted deployment: containers	UC SC ICON LowFidelity MOD
00000	rargeted deployment. containers	UC SC ICON MediumFidelity MOD
		UC SC ICON HighFidelity MOD
		0 7_
		UC_SC_ICON_LowFidelity_DEP
		UC_SC_ICON_MediumFidelity_DEP
		UC_SC_ICON_HighFidelity_DEP
UC-3-AD.1	Adaptation of the number of workers	UC_SC_ICON_LowFidelity_ADP
		UC_SC_ICON_MediumFidelity_ADP
UC-3-UF 1	Targeted deployment: memory	UC SC ICON LowFidelity MOD
00-5-01.1	raigeted deployment. memory	UC SC ICON MediumFidelity MOD
		UC SC ICON HighFidelity MOD
		5 5_
		UC_SC_ICON_LowFidelity_DEP
		UC_SC_ICON_MediumFidelity_DEP
		UC_SC_ICON_HighFidelity_DEP
UC-3-UF.2	Targeted deployment: deployment time	UC_SC_ICON_LowFidelity_MOD
		UC_SC_ICON_MediumFidelity_MOD
		UC SC ICON LowFidelity DEP
		UC SC ICON MediumFidelity DEP
		UC_SC_ICON HighFidelity DEP
UC-3-SH.1	Track worker velocity	UC_SC_ICON_LowFidelity_DEP
	•	UC_SC_ICON_MediumFidelity_DEP
		UC_SC_ICON_HighFidelity_DEP

D6.3 Use cases definition and preparation

Conclusion

MORPHEMIC will deliver a number of benefits to various different domains and use cases. These have been described in detail in this deliverable, along with a description of the respective use cases. With the various use case scenarios, the benefits are mostly explained from the perspective of the users and less from the technical standpoint.

A description of the use cases can be found in this document along with a description of the benefits that MORPHEMIC platform will provide. Through the various use case scenarios, the benefits are illustrated. The use case scenarios will serve as a basis for testing and validating the MORPHEMIC platform.

Use cases and use case scenarios are very important in developing software applications. For MOPRPHEMIC, it serves as an important methodology for demonstrating the intended functionality. By using this procedure, we ensure that MOPRPHEMIC's components are tailored to the needs of the three represented company. In addition, use case scenarios can be used to assess the usability of the platform as a whole. These aspects related to the validation, verification of a use cases will be the topic of the future deliverables of MORPHEMIC projects namely "use cases validation",

- D6.2 Validation framework design"
- D6.4 Use Cases prototypes
- D6.5 Validation outcomes

In this deliverable, we provide an overview of how we prepared use case scenarios, including models and sequence diagrams in UML. We used the MORPHEMIC usage case scenarios to ensure we took a user-centric approach.

The use case definition includes the steps that are followed when different types of users interact with the MOPHEMIC functionality in order to accomplish their business objectives. We used the MORPHEMIC usage case scenarios to ensure we took a user-centric approach. Aside from that, we also highlighted the environment around the business application, its domain, and how each business actor would benefit according to his or her role.

Overall the information included here will form the the basis of the guideline that will be provided to each use case community.

Ultimately, the information that we present here will form the basis for the guides that will be provided to each community that builds on the use cases we describe here.