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1 Introduction 

This document provides an architectural overview of the Proactive Utility framework, which is a part of the proactive 
adaptation feature of the MORPHEMIC Pre-processor platform. The goal of the proactive adaptation (also known as 
proactive reconfiguration) feature is to provide the ability to optimize the application’s deployment in a fixed time 
horizon in the future. It means that the application will be optimized for future execution conditions, allowing ample 
time to reconfigure resources before they are really needed by the application. 

The proactive adaptation can be discerned into reactive or proactive depending on when it reacts to a specific problem 
like a Service Level Objective (SLO) violation. While reactive adaptation is fully accurate in the sense that the adaptation 
is triggered when the problem has appeared, it suffers from the issue that a reaction has a certain latency which can take 
multiple minutes in the context of application scaling in the Cloud. In this sense, such a delay might be as critical as: 
the problem can become exaggerated once we finally once we detect it as very negatively impactful, which can lead to 
major economic loss due to huge violations of Service Level Agreements (SLAs), or it might not even exist anymore, 
leading to wasted resources with no actual gain. On the other hand, proactivity allows us to prevent these kinds of 
situations. However, it suffers from the fact that there is an uncertainty in terms of whether the problem will appear, and 
of the intensity or criticality of the problem, which leads to the argument that resources might be wasted either with no 
actual concrete cause, or by overreacting to a problem which is not as big as it has been predicted. As such, it could be 
advocated that there is a complementarity between these two approaches such that they are applied in conjunction or 
that there is a need to couple the most efficient type of approach, i.e., the proactive one, with suitable and highly accurate 
prediction techniques. These concerns are further discussed in Section 3. 

This document also provides a methodology whereby the DevOps may model the functional form of the utility for each 
measurable metric considered by choosing from a catalogue of parameterized template function forms, and then the 
functions of individual metrics are combined to form the overall utility function for the application. It provides the 
description of various approaches for utility function modelling that leads to Cloud application resources optimization 
together with the discussion on fundamental concerns about forecasting in control loops. Various ways of modelling 
and estimating the utility function are described, discussed, and initially evaluated. The directly modelled utility 
functions, described in Section 5.1, from high-level policies can simply be used by use case partners during the 
preparation of a CAMEL Model for their use-case applications. The marginal metric utility function approach, described 
in Section 5.2, gives good results in terms of evaluating the change in the utility when new measurements are being 
gathered. This approach needs to be investigated further on how to include that kind of utility function in the decision-
making process. On the other hand, the utility metric approach, described in Section 5.3, gives promising results, and it 
is already fully designed and included in the software architecture of the proactive adaptation feature in the 
MORPHEMIC platform. It is important to notice that this document provides the initial description of the overall 
proactive utility framework and the final results of the work as well as the implementation details will be described in 
deliverable D2.4 Proactive utility: Algorithms and evaluation. 

1.1. Structure of the document and Intended Audience 

The document contains the following sections which are intended for the target audience:  

• User preferences in Cloud application resources optimization – in this section the state-of-the-art analysis, i.e., the 
discussion about utility-based and rule-based approaches in Cloud application resources optimization that gives 
the motivation of the work reported in the later sections is provided. This section should be read by all research 
partners to understand the current work and approaches for proactive utility and optimization 

• Forecasting in control loops – in this section the fundamental concerns about forecasting in control loops are 
discussed. This section should be read by all partners, especially those involved in the work reported in WP2 
Proactive model morphing and WP3 Polymorphic planning and adaptation work packages. 

• Proactive utility modelling – this section presents two new approaches for modelling a utility function using high-
level utility policies and template functions. Both approaches are discussed and initially evaluated. The description 
of utility function modelling and representation in CAMEL model is also provided. What is more, this section 
proposes a set of predefined utility functions that can be used by use cases partners and any other person interested 
in designing the utility function for Cloud application resources optimization. This is the reason that this section 
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should be read by use case partners while it can be also interesting for MORPHEMIC users from outside the 
project. 

• Architecture: Proactive adaptation approach – this section presents the overall architecture of the proactive 
adaptation feature together with the sequence diagrams of three key processes that are a part of proactive 
adaptation: creating the utility function formula from high-level policies, proactive optimization, and utility 
function value calculation. In addition, the description of key components involved in the proactive adaptation is 
provided. This section should be read by all technical and use case partners. 

• Conclusions - this section summarizes the deliverable and draws directions for further work.  

2 User preferences in Cloud application resources optimization 

Maintaining complex distributed applications using multiple deployment possibilities at the same time and adapting the 
application's configuration and resources depending on time variate demand is a daunting task that should be supported 
by autonomic application management platforms [2] The decisions made by the platform must reflect the implicit and 
explicit goals of the application's users and owner. 

In this section, the description of two main approaches for the user preferences in the optimization of Cloud application 
resources is provided. Three main surveys [3] [4] [5] have been found as relevant towards resource optimization and 
auto-scaling. Most of these surveys indicate that the reviewed approaches are either proactive or reactive. Further, they 
indicate that the reviewed approaches tend to focus on either low-level, high-level or both kinds of metrics. They also 
agree that the utilized resource optimization technique is considered as a dimension, various categories of approaches 
can be deduced, including utility-based (which means based on the utility function) and rule-based approaches (which 
means based on the set of rules). The utility-based approaches are the most flexible and allow for complex modelling of 
user preferences that enables the most accurate optimisation of Cloud applications[6]. In MORPHEMIC, we generally 
follow a mixed approach where a utility-based approach is followed to find the best deployment configuration, and a 
rule-based approach is followed that results into a set of Service Level Objectives for the proactive triggering of the 
reconfiguration process.  

2.1 Utility-based approaches 

The decisions made by the optimization platform must reflect the implicit and explicit goals of the application's users 
and owner. Consequently, the decisions should aim at maximizing the application's utility as the utility is an established 
concept representing choices of a rational economic actor [7]. The iterative autonomic computing feedback loop, 
Monitor, Analyse, Plan and Execute - with Knowledge (MAPE-K) [8], has been used to build management frameworks 
for mobile applications [9], for ubiquitous computing systems [10], and for autonomic management of applications 
deployed simultaneously to multiple Cloud providers [6]. All of these approaches are based on capturing the 
application's utility in a functional expression, 𝑈'𝒄(𝑡!)+ 𝜽(𝑡!).: 𝑉 ↦ [0,1] , mapping the application configuration 𝒄 
from the application's variability space, 𝑉, to the unit interval [0,1] given a vector of measurements, 𝜽(𝑡!), representing 
the application's execution context at the current time 𝑡! . The best configuration at time 𝑡! is then taken to be the 
configuration maximizing the utility expression, 𝒄∗(𝑡!) = 𝑚𝑎𝑥#⃗∈&𝑈'𝒄(𝑡!) + 𝜽(𝑡!).. 

The key to the success of these approaches is consequently how well the utility function is able to capture the goals of 
the application's owner. Experiments conducted with experienced DevOps engineers show that formulating explicitly 
the utility function is difficult and discouraging [11]. The main problem is that it is difficult to foresee and model how 
a change in the configuration will affect the execution context of the application as the measurements represent an 
indicator of how well the application is performing. For instance, Horn and Skrzypek presented an application 
decrypting encrypted documents as on demand by the application's users [6]. The utility of that application had possibly 
conflicting goals: the cost of the deployment to be minimized and the performance of the application to be kept stable 
and at a satisfactory level for the application's users. The utility value returned from the utility function should balance 
these goals and reflect the DevOps engineer's preference for a given application configuration. The DevOps engineer 
may relatively easily decide on the cost utility as a function of the number of instances, and the performance utility as a 
function of the average response time per document requested by the application's users. However, it can be very difficult 
to model these utilities as required by the current approaches as a functional expression that captures the dependency 
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between the metrics influenced by the application deployment configuration being the choice of the Cloud provider, the 
Virtual Machine type to use, and the number of Virtual Machines. 

The utility in autonomic computing is almost certainly multidimensional combining objectives measured on different 
scales. Overall, the multiple objectives can be conflicting and the utility function balances the different utility 
dimensions. A partial remedy is to formulate the utility function as an affine combination of the normalized utility 
decomposed into its various dimensions, 𝑑 ∈ 1,… , 𝐷 ⊂ 𝑁'. The utility is then specified independently for dimensions 
like performance and cost. This leads to a multi objective optimization problem, and it may be possible to find robust 
weights of the affine combination for the bi-objective case [12]. Utility modelling starts from the attributes used by the 
decision maker to decide on the utility, i.e. the attributes may well correspond to the utility dimensions. Keenley showed 
that if the attributes are independent, then the utility function is either additive or multiplicative in individual marginal 
univariate utility functions over the individual attributes[13]. The additive property was used by the UTilité Additive 
(UTA) [14] method for constructing marginal utility functions from piecewise linear functions given a set of known 
'actions' and the evaluation of these actions with respect to all decision criteria and a partial ranking of the different 
criteria. Yang and Sen proposed an interactive step trade-off approach soliciting the decision maker's evaluation 
feedback in the UTA method to eliminate possibly inconsistent user preference information[15]. The UTA methodology 
has later been extended for non-additive utility functions that allows for interaction among the decision criteria [16]. 
Ultimately, one may directly learn the decision maker's preferences from a set of pairwise criteria comparisons using an 
artificial neural network[17]. All of these approaches can collectively be understood as driven by preference data 
provided by the decision maker evaluating multiple alternative configurations. However, the sheer size of the 
application's variability space will most likely prevent the application of interactive data driven approaches in autonomic 
computing. 

A different approach is used when modelling uncertainties in the utility function assuming that there is a deterministic 
utility represented by a known multivariate value function balancing the different decision criteria, and an uncertain 
univariate utility function taking the value returned by the value function as an argument. For the example above one 
may model the cost of an application configuration as a value function over the application configuration as the price of 
the VMs used for the deployment. However, there is a risk that keeping the cost low will impact negatively the other 
decision criterion, namely the application performance. Matheson and Abbas show how describing the risk attitude of 
the decision maker for one decision attribute allows the determination of the utility function for the other attributes from 
the value function [18]. Risk aversion is linked to the partial derivatives of the utility function. Abbas gives general 
formulas for these derivatives [19], while Alghalith demonstrates how the utility function can be derived using Taylor 
series expansion of the univariate utility function over the given value function [20]. The issue with the value function 
approach is that specifying the value function is just as cumbersome as specifying directly the utility function, and 
therefore it does not help to overcome the issue of modelling the utility function for autonomic computing. 

There is an alternative provided that there is systematic variation in the attribute values implying that more of every 
attribute is better than less. As an example, consider the Cloud application deployment attribute dimensions 
'unconsumed budget' and 'application performance'. Obviously, one will desire more of both, and there will be minimal 
values in both dimensions. Furthermore, if one additionally has that the utility will be zero whenever any single attribute 
attains its minimum value, then the utility function will belong to the class of attribute dominance utility functions [21]. 
This class has similar mathematical properties as multivariate joint cumulative probability distributions, and the joint 
utility function can be derived from the univariate 'marginal' utility functions for each of the utility dimensions. Abbas 
and Howard suggested using copula theory [22] developed for joint probability distributions to model the utility, 
although this would natively result in a utility function where all mixed partial derivatives with respect to the attribute 
dimensions would be positive (an 𝑛-increasing utility) functions [21]. This consequence can be undesirable for many 
utility functions. Abbas subsequently proposed specialized utility copulas relaxing the requirement of zero utility at the 
lower limit of any single attribute and the 𝑛-increasing property [23], and defined the Archimedean utility copulas 
inspired by the similar copula concept from statistics [24]. Abbas and Sun developed a methodology for constructing 
an Archimedean utility copula from a set of preferences given by the decision maker [25], and recently they analysed a 
form of the Archimedean utility copula with polynomial generating functions [26]. 

It should be noted that the marginal utility functions used for the utility copula are functions of the decision attributes. 
In other words, the utility copula theory provides an excellent framework for combining the utility dimensions for an 
autonomic computing system. However, the user must still define the link between the marginal utility and the possible 
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actions and system state represented respectively by the configuration 𝒄(𝑡!) and the application execution context 𝜽(𝑡!). 
The marginal metric utility function approach described in section 5.2 closes this gap with a methodology for directly 
modelling each marginal utility dimension based on the decision maker's assessment on the impact of the application 
execution context only. 

2.2 Rule-based approaches 

Rule-based approaches to resource optimisation are approaches that utilise rules, usually specified by the user, in order 
to drive the resource optimisation. Such rules are most of the time scaling, indicating when exactly to horizontally 
scale an application as, e.g., it is lacking some resources to anticipate the current workload. The condition part of these 
rules includes constraints over specific quality attributes or metrics like average response time. For instance, a scaling 
rule could indicate that when response time is greater than 10 minutes, then additional resources (e.g., VMs) need to be 
added to the application at hand. Scaling rules can be characterised as local. This means that they usually concern a 
specific part of an application, like a component. This results in horizontally scaling the instances of application 
components as well as the need to introduce a load balancing component (in the application architecture) on top of these 
application component instances in order to evenly distribute the load among them.  

Cloud applications are usually multi-layer such that they might have different resource requirements and scaling policies 
per each tier. Furthermore, it might be possible that the scaling policies (per tier) might need to change over time due to 
the dynamicity of the workloads, the unpredicted behaviour of Cloud environments and the need to further optimise 
them so as to perfectly cover the most suitable scaling behaviour for the Cloud application. In this respect, rule-based 
approaches, which means the application of fixed scaling policies or rules even with a different content per tier would 
not suffice or work, would lead to significant cost spending while it would also cause Service Level Agreement (SLA) 
[27] violations and medium or low service levels1 being delivered. As such violations concern formal agreements with 
application clients, penalties can be enforced leading to economic loss while the reputation of the cloud provider can be 
reduced.  

Finally, we should put in the table the aspect of agility: rule-based approaches can be discerned into reactive or proactive 
depending on when they react to a specific problem like an SLO violation. In the following, we analyse the related work 
in Cloud application scaling in separate categories depending on the complexity of the rules that are being employed, 
or derived and subsequently applied by respective approaches in sight of the issues that were aforementioned. 

The norm in the Cloud market is that most of the Cloud providers only supply the ability to specify and execute simple 
scaling rules per application components or groups of components which define specific single or complex conditions 
on metrics and the respective number of instances to increase or decrease. Focusing on the most popular Cloud Provider, 
Amazon Web Services (AWS)2, there has been some evolution towards more flexibility in the definition of such rules. 
In particular, different scaling rules3 can now be specified: 

• The well-known simple scaling rules with some flexibility in terms of how to determine the actual number of 
resources to increase or decrease: either this number is fixed or related to the actual current number of resources 
as a percentage (e.g., 20% increase) 

• Step-Wise, violation-based scaling rules which supply mappings from different, non-overlapping violation ranges4 
to specific modifications on the number of Cloud resources being exploited. Each mapping focuses on a different 
violation range with respect to a threshold. For instance, suppose that we have an upper threshold of 80% on 
average CPU utilisation. Then, we have the ability to specify two mappings as contents of the desired scaling rule:  

 

1 a service level is a specific set of quality capabilities or requirements concerning an application or service. Such a level then comprises a set of 
Service Level Objectives (SLOs) as constraints on quality metrics or attributes. For instance, one service level might comprise two SLOs: one 
indicating that average response time of the application should be less than 5 seconds and another highlighting that average application availability 
cannot be less than 99.99%. 
2 https://aws.amazon.com/  
3 https://docs.aws.amazon.com/autoscaling/ec2/userguide/scaling_plan.html 
4 A range indicating how much a specific SLO like average CPU utilisation < 80% is violated 
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• (0,10] violation → 20% increase: this rule indicates that if the actual average CPU utilisation is between (80,90], 
then there should be an increase in the amount of allocated resources by 20% 

• (10,20] violation → 40% increase: this rule indicates that if the actual average CPU utilisation is between (90,100], 
then there should be an increase in the amount of allocated resources by 40% 

• Target tracking scaling rules which determine the amount of resources to increase or decrease to horizontally scale 
the Cloud application based on a specific target condition given by the user. Such target conditions are mainly 
specified for negatively monotonic metrics5 for which we need to supply upper thresholds. The resource update 
determination relies on the distance between the current metric value and the given threshold while the timing of 
the scaling execution varies depending on whether there is a need to scale-out or scale-in the application. In 
particular, scaling-in is more granular in comparison to scaling-out which is applied as fast as possible. As AWS 
states 6, such rules are not so efficient for scaling groups of a small size. However, they can be combined with 
other kinds of scaling rules on other metrics in such a way that scaling-out is conducted when one of the rule fires 
while scaling-in is conducted when all scaling rules fire.    

AWS and Google Cloud Platform (GCP) 7 now support the notion of predictive scaling, which further improves local 
scaling especially when combined with target tracking. This enables to predict when a specific rule will be violated in 
the future and trigger it to scale the application on time such that the respective SLO will not be eventually violated. 
Proactiveness enables to save costs as adaptation issues are anticipated as early as possible before they become larger 
and more difficult to address. However, as we talk about local scalability rules, this means that the application is still 
adapted locally while, e.g., an increased workload could create performance issues in multiple parts of an application 
and not just one.   

While we do acknowledge the increased flexibility in scaling rule specification, there are still various problems to 
address, such as how can we dynamically adapt the first two rule kinds (simple & step-wise), how to determine the best 
thresholds and resource number updates in the first place and how to guarantee that the Cloud application is globally 
scaled in an optimal manner. This last problem is a known issue for local-scalability rules. The target tracking scaling 
rule type seems to be promising as it realises the concept of an auto-scaler, but the main question is how effective this 
is in sight of the issue that it does not work well for small scaling groups. Furthermore, it does not cover all possible 
metric kinds (e.g., positively monotonic) while it might not be so appropriate when the given threshold is not violated, 
e.g., it would still keep some excessive resources up even if they are not needed.  

RightScale8 has proposed a more efficient autoscaling algorithm that combines reactive scaling rules with voting. In 
particular, each VM instance includes a set of predefined rules that enable it to decide whether to scale-out or scale-in. 
All VM instances then communicate and via majority voting 9 10, they can decide whether there is a need to scale-in or 
-out the Cloud application. While this scaling approach seems interesting, it still relies on predefined rules whose content 
need to be determined while it seems not to take into consideration the workload trend. In Simmons et al. [28], these 
issues are attempted to be resolved through a strategy-tree, a structure that enables to evaluate the deployed policy set 
and to switch between alternative strategies in a hierarchical manner. Three scaling policies were defined for this purpose 
which are matching different input workloads and the method relying on the strategy-tree will dynamically select one 
of them over time by considering the current workload trend. 

 
5 A negatively monotonic metric is a metric whose values should be minimised as much as possible. In other words, the lower is the value of the 
metric, the better is the respective utility (for the application). Examples of negatively monotonic metrics include response time, (network) latency 
and execution time.  
6 https://docs.aws.amazon.com/autoscaling/ec2/userguide/as-scaling-target-tracking.html#target-tracking-considerations  
7 https://cloud.google.com/  
8 http://support.rightscale.com/12-Guides/Dashboard_Users_Guide/Manage/Arrays/Actions/Set_up_Autoscaling_using_Voting_Tags/index.html  
9 https://docs.rightscale.com/cm/rs101/understanding_the_voting_process.html  
10 https://en.wikipedia.org/wiki/Majority_rule  
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Another interesting idea is called smart kill, which relies on the observation that partial VM usage hours are priced as 
full[29]. Thus, it is proposed that the respective VMs should not be destroyed before the whole usage hour is spent when 
the workload is low such that they could be re-used in case it is needed, e.g., change in workload. 

Finally, the concept of dynamic thresholds is proposed by Lorido-Botran et al.[30]. Their suggestion is that, once the 
original threshold values are set up, they can be automatically updated based on the observed SLA violations during 
application runtime. Such an updating is conducted through meta-rules which explicate how the threshold values can be 
changed to better adapt to the workload.  

Approaches utilising local scalability rules seem to have improved over time. In fact, we believe that the use of predictive 
scaling with target tracking is the right way to go forward, potentially with the addition of dynamic threshold capabilities 
(to, e.g., correct imprecise rule conditions). However, the aforementioned issues of how to specify rules in the first 
place and how to globally optimise an application still apply. In the first case, the specification of a local scalability 
rules condition is the most difficult problem, especially as there is a need to split an overall application quality 
requirement into multiple local ones. This issue is avoided by MELODIC/MORPHEMIC as resource optimisation relies 
on global application quality constraints that are directly derived from non-functional business requirements. However, 
we do acknowledge that MELODIC did not consider proactive adaptation and that is why now MORPHEMIC follows 
a predictive approach towards globally adapting a cloud application in order to gain the advantages of 
proactiveness. Further, MORPHEMIC globally adapts the cloud application such that it does not suffer from the 
second aforementioned issue of local adaptation. In our view, MORPHEMIC combines the best from both worlds: it 
utilises preferences to specify an overall utility formula that guides the global application optimisation while it does 
follow both a proactive and reactive approach towards such optimisation by considering precise, global SLO rules. The 
proactive approach adapts the application even before a SLO violation occurs while the reactive approach takes over to 
make some necessary corrections. Such corrections can happen in two cases: (a) there is a still a subtle SLO 
violation that needs small treatment even if proactiveness was applied; (b) prediction is not possible or accurate which 
can well happen in the beginning of application provisioning.     

3 Forecasting in control loops 

The utility function will be used as a representation of the goals and the deployment objectives of the organisation 
deploying the application. It will be used as a substitute of a response from that organisation when evaluating different 
deployment options, and its value must reflect the assessment on a proposed deployment configuration as if it was made 
by the organisation owning and operating the application managed by MORPHEMIC. Thus, in a nutshell, 
MORPHEMIC tries to find the configuration that maximizes the utility function. This section discusses the implications 
this has with respect to the proactive decisions.    

3.1 Utility and optimisation 

From economic theory we know that a rational agent, like MORPHEMIC, should make decisions that maximizes the 
agent’s utility [1]. In contrast with classical control theory where the evolution of the controlled system whose efficiency 
is optimized can be described by the first principles and physical properties of an ideal system, potentially operating in 
noisy conditions, the decisions made by a rational agent will be influenced by the agent’s context. The ‘context’ can 
here be thought of as everything in the agent’s environment or psychology that directly or indirectly influences the 
decision. Hence, the decisions are conditioned on a context that must be incorporated into the utility function before the 
utility can be maximized by a decision that can be called optimal for the current context. 

Even though the utility value can be computed in many ways opaque to MORPHEMIC, it is convenient to think about 
the utility as a function that is evaluated and maximized. As per the previous paragraph, the utility function is 
conceptually a function specific to the current context. Each decision has a separate utility function, but this can 
hopefully be represented by a family of functions whose parameters are context dependent. For instance, a decision to 
buy an electrical vehicle will depend on the decision maker’s parameters for cost and on range, and the values to assign 
to these parameters depend on the decision maker’s context like salary, family conditions, and need to travel far. 
Furthermore, the utility function represents the trade-off between the cost and the range based on the anticipated use of 
the car or the probability of having to make longer journeys: For instance, the decision maker’s empirical trip length 
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probability distribution parameters can be included as parameters in the utility function balancing the cost and range 
factors. Therefore, it is assumed in the following that the utility function for the specific decisions the Cloud deployment 
configuration of a particular application can be represented as a single function with context dependent parameters. 

The values of these context dependent parameters must be obtained by monitoring the running application and thereby 
obtaining quantifiable measurements of the application’s execution context. Computing systems have offered many 
standard context variables as the load on the Central Processing Unit (CPU) or the memory consumption of an 
application. Additionally, MORPHEMIC allows the Cloud platform level monitoring to be augmented with application-
level sensors that monitor values across all Cloud platforms used to deploy the application. This allows the application’s 
execution context to be monitored with more relevant parameters at different application levels. For instance, the number 
of concurrent application users can be directly measured without having to infer this as a complex mapping from the 
observed load on the computing infrastructure. It is therefore an important task for the DevOps engineers responsible 
for the application to identify the parameters that are most relevant for characterizing the application’s execution context, 
and then provide the necessary sensors coupling the information available only inside the application to the distributed 
Event Monitoring System (EMS) of MORPHEMIC.  

These measurements are then used to specify the context parameters of the utility function. In practice, we will see that 
the utility can be described as combination of unary functions of the context measurements. However, the result is that 
MORPHEMIC will find the best application configuration for the current context by optimizing the utility function for 
these specific application execution context parameters, and this configuration may no longer be the best when the 
application’s execution context changes. Furthermore, if the best application configuration found in this way is different 
from the configuration currently running, the currently running application will be reconfigured to the newly found 
configuration as this will be optimal for the application’s current execution context. 

Two important observations must be made at this point: The optimization problem to be solved will be different each 
time since it is solved for different context parameters; and after the reconfiguration the measurements of the execution 
context will be different because of the new application configuration deployed.  

3.2 Time, and time again 

Each context parameter measurement represents an event occurring at a time point. There is no reason to assume that 
the sampling of events is regular, i.e., that the interval between two time points for the series of measurement is constant. 
Consider as an example the context parameter measuring the number of users of an application: The users obviously 
arrive or depart at their own will at irregular time points. Regular sampling may only be used for context parameters 
whose underlying signal is continuous, albeit one may philosophically question if something in a computer will ever be 
continuous as it is always a question of the granularity of the clock available for the sampling. Should one decide for 
regular sampling of events, it is important that the sampling frequency is high enough to satisfy the conditions of the 
Whittaker-Shannon sampling theorem so that the underlying continuous signal can be reconstructed from the sampled 
values [44].  

The implication of this observation is that each context parameter is measured on a set of time points that is specific to 
the context parameter. The set of event times for two different context parameters may not have any common elements. 
However, the application’s execution context for the time point now is defined as the vector of all the current context 
parameter values. In other words, the application’s execution context changes whenever anyone single context value 
changes, and the time axis of the application’s execution context change events is the union of all the event time points 
sets of all the context parameters. 

This means that the application’s execution context is constant only until the next event time of any of the context 
parameters. As the utility of the deployed configuration is conditioned on the application’s execution context, this means 
that the utility value of the current configuration changes whenever the application’s execution context changes. Keeping 
the deployment optimal would therefore require finding again the deployment configuration maximizing the utility for 
the application’s current execution context whenever that context changes. It is important to notice that the reasoning 
and redeployment takes time. It may therefore be computationally challenging or even impossible to keep the 
deployment optimal given the potentially frequent changes in the application’s execution context. 
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It should be noted that even though the utility of the current deployment configuration may no longer be optimal after a 
change in the application’s execution context, it does not mean that the current deployment configuration is infeasible. 
Generally, the utility is maximized subject to some operational constraints, and the deployment configuration stays 
feasible if none of the constraints are violated. Thus, one may continue to use the current configuration for a changed 
execution context provided the configuration is feasible also for this new context. It is computationally possible to assert 
the operational constraints for each change in the application’s execution context, and only if one of the constraints is 
violated will it be necessary to solve the optimization problem to find the optimal configuration for the changed context. 
For this reason, MORPHEMIC guarantees an optimized application configuration, but not necessarily the optimal 
application configuration for the application’s current execution context. 

The constraints that trigger a reconfiguration are called Service Level Objectives (SLOs) in the application modelling 
language CAMEL and they will be evaluated for every measurement arriving from the managed application as each 
change of a metric indicates a change in the application’s execution context. The assessment of the SLOs is made by 
the Meta Solver component, and if any of the SLOs is violated, it will request a new configuration optimized for the 
current set of metric values, i.e. the application’s current execution context. Solving the optimisation problem will take 
some time, and after the best configuration has been found, the current deployed application must be reconfigured to 
this new configuration. The reconfiguration involves the Adapter first planning and ordering the reconfiguration actions, 
e.g. starting and stopping VMs and connecting them in the right sequence, and then the Executionware will enact this 
plan to change the deployed application configuration into the optimal configuration for the context. This process is 
illustrated in Figure 1. 

The figure illustrates two main problems: 

1. Solving the optimisation problem and enacting the adaptation take time. This time is a random variable of 
unknown distribution since the time it takes to do the two steps depends on the complexity of the problem and 
the type of changes observed in the application’s execution context. 

2. During the reconfiguration lag the application keeps on running in the current constraint violating configuration. 
This means that other SLOs than the one(s) triggering the reconfiguration process may also be violated during 
the reconfiguration lag. However, the optimization problem is solved for the application’s execution context as 
it was when the first SLO violation was detected. This implies that the configuration found optimal for this 
application execution context may immediately cause new SLO violations when deployed as the continued 
changes in the application’s execution context during the reconfiguration lag have not been taken into 
consideration. 

The first problem is further discussed in this deliverable. The main idea is to forecast the application execution context 
at the time when the reconfiguration is completed. Given that the reconfiguration lag is a random variable, one may 
compute the appropriate upper quantile of its empirical distribution and use this as an upper bound for the 
reconfiguration time, and thereby also for the application execution context prediction horizon.  

The second problem can be overcome by using a solver that is tolerant to changing conditions since a change in the 
application execution context should result in a change in the constraints and in the utility function whose maximisation 
is the objective of the solver. This means that if the solver evaluates the utility function and the constraints for the same 
candidate application configuration at different time points, it will have different values returned from the utility 
function, and the constraints may suddenly deem the proposed configuration as infeasible. Thus, seen from the solver, 
it operates in a random environment, and through multiple interactions with this environment it will over time learn the 
best average solution for the application’s current execution context. The implication is therefore that the solver should 
be stateful and run continuously alongside the application and based on reinforcement learning as it may need to learn 
and then unlearn optimal configurations as the execution progresses. Different solvers and alternatives tried and yet to 
be investigated is the subject of Deliverable D3.3 Optimized planning and adaptation approach.  
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Figure 1 - The application reconfiguration process and the components involved starts from the violation of a Service Level Objective constraint 
violation and ends with the Executionware completing the adaptation actions transforming the deployed application configuration into the optimal 
configuration found by the solver for the application’s current execution context. 

3.3 The data farming example 

To illustrate the utility guided optimisation discussed in the previous section, consider a data farming application. This 
class of applications consists of a set of jobs to be executed. These jobs can, for instance, be a set of simulations of some 
complex phenomenon where each simulation is executed on different system parameter settings to see which parameters 
that will produce a simulated system response most closely resemble the observations, and thereby reveal the best fitting 
system parameters for the situation at hand. The jobs are data parallel and so there are no dependencies among the jobs 
during execution. The jobs are executed on one or more workers, and there is a coordinating dispatcher or scheduler 
submitting jobs to ready workers and collects the results of the executions. Note that this execution pattern also matches 
many big data processing applications executed by frameworks like Spark11 and Hadoop12. The pattern with one 
scheduler and many independent workers is also known as High Throughput Computing (HTC), for which the 
HTCondor13 is a generic scheduler. The pattern is similar to many High Performance Computing (HPC) applications; 
however, HTC tasks submitted to the workers have data dependencies and exchange data and results over the course of 
the computations. 

One will often have a deadline for completing all jobs in a data farming application since it may be necessary to know 
the system parameters before the system under investigation changes state, or to find timely a solution to a data mining 
problem. This is where the elasticity of Cloud computing comes in handy as one may reduce the completion time, known 
in scheduling as the makespan, by adding more workers. The minimal makespan can obviously be achieved by having 
one worker per job, with the makespan being the time it takes to compute the most time-consuming job. Running the 
application in this optimal way is also the costliest as more worker machines must be needed, and if the computational 
deadline is much longer than the longest computation time for any job, it will be beneficial to run several jobs 

 
11 https://spark.apache.org/  
12 https://hadoop.apache.org/  
13 https://research.cs.wisc.edu/htcondor/  
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sequentially on a smaller number of workers. Consequently, the best utility for the owner of a data farming application 
is the compromise between performance and cost. These are two conflicting utility dimensions of the problem. The 
desired best utility will obviously be for the application deployment configuration that provides the least number of 
workers that is sufficient for the data farming experiment to reach its deadline. 

One may safely assume that one job needs at least one core. Thus, the parameter that decides on the performance is the 
‘number of cores’ across all workers. The cores can be provided by scaling the workers vertically, i.e., by providing 
more cores per worker Virtual Machine (VM), or horizontal scaling by providing more VMs with one worker installed 
per VM. In either case one may simplify the application modelling by assuming that all workers are of the same VM 
type with the same number of cores. The performance parameter of interest is, therefore, the product of the number of 
worker VMs with the number of cores per VM. With respect to the cost utility, it is important to consider these separately 
as it may be cheaper to deploy many smaller VMs than a few larger VMs, or vice versa, depending on the pricing models 
of the Cloud providers being used. Thus, the performance parameter of interest for the DevOps engineer is composed 
of two variables that can be set independently for the deployment: the number of workers, and the number of cores per 
worker. 

The time needed for a worker to finish a job is a priori unknown. To assess if the deadline is met by the current 
configuration of workers, one needs an upper bound on the time needed for the remaining jobs. The easiest way to obtain 
this upper bound is to observe the time it took to finish each job and record the maximal completion time. A crude 
estimate for the upper bound on the total time needed is then found by multiplying the recorded maximal completion 
time with the number of jobs remaining. Under the worst-case assumption that each job gets only one computational 
core, one can divide by the number of cores to get an estimate for the computational time needed to complete the 
remaining jobs. This approach is sensitive to outliers, i.e. extreme jobs taking much longer time than the others, as it 
assumes that all future jobs will take the longest possible time. The computation time for each job is really a random 
variable with an unknown distribution. One may estimate empirically this distribution as the work progresses by 
measuring and recording the time taken to process each job when the job is completed. Depending on the amount of 
error one can tolerate, the corresponding upper quantile is computed from the empirical distribution and multiplied with 
the number of remaining jobs to give an estimate for upper bound on the time needed to complete the remaining jobs. 
This approach leads to two context parameter values available at the time point whenever a job finishes: the number of 
remaining jobs, and the upper quantile of the job computation time distribution. 

The utility of a deployment configuration candidate can then be found by playing a ‘what-if-game’ against the currently 
deployed configuration: Given the current configuration and measurements, what would the utility be if we changed the 
configuration? This means that one has to include the current configuration is a ‘measured’ part of the application’s 
execution context as regards potentially better configurations suggested by the solver during the optimisation process. 
Hence, there are two context parameters for the current configuration corresponding to the variables set for the 
configuration candidate proposed by the solver: the current number of worker VMs, and the current number of cores on 
each worker VM. Table 1 summarises the context parameters of the performance utility, its decision variables, and the 
concepts that can be derived through functional relations to other concepts. 
Table 1 - The concepts of the performance utility dimension of the data farming example 

Concept Symbol Formula 

Event time when one job finishes 
computation 

𝑡!  

Constants vector 𝝓 

Deadline for all jobs ϕ(  

Scaling parameter ϕ) ϕ) > 0 

Decision variables of the next configuration vector 𝐜(t*'() 

Number of worker VMs 𝑐((𝑡!'()  



D2.3 Proactive utility- Framework and approach 

 

Page 15 

 

   

 

Concept Symbol Formula 

Cores per worker 𝑐)(𝑡!'()  

Application’s execution context parameter vector 𝜽(𝑡!) 

Number of remaining jobs θ((𝑡!) = θ((𝑡!+() − 1 

Upper quantile of job time distribution θ)(𝑡!) From the empirical distribution of Δ𝑡, = 𝑡, − 𝑡,+( 

Total time spent until now θ-(𝑡!) = 𝑡! 	measured from the wall clock 

Time bound on remaining jobs θ.(𝑡!) = θ((𝑡!) ⋅ θ)(𝑡!) 

Future number of cores θ/(𝑡!) = 𝑐((𝑡!'() ⋅ 𝑐)(𝑡!'() 

Bound on the wall clock time for 
remaining jobs θ0(𝑡!) =

θ.(𝑡!)
θ/(𝑡!)

=
θ((𝑡!) ⋅ θ)(𝑡!)

𝑐((𝑡!'() ⋅ 𝑐)(𝑡!'()
 

Bound on completion time θ1(𝑡!) = θ-(𝑡!) + θ0(𝑡!) = θ-(𝑡!) +
𝜃((𝑡!) ⋅ 𝜃)(𝑡!)

𝑐((𝑡!'() ⋅ 𝑐)(𝑡!'()
 

Margin on the deadline θ2(𝑡!) = 𝜃1(𝑡!) − ϕ( = 𝜃-(𝑡!) +
𝜃((𝑡!) ⋅ 𝜃)(𝑡!)

𝑐((𝑡!'() ⋅ 𝑐)(𝑡!'()
− 𝜙( 

The utility value is confined to the unit interval where unity means perfect utility and zero means an unacceptable 
configuration. The performance utility should therefore be high when the margin on the deadline is positive and then 
degrade when the solution indicates that the deadline is barely met, or not met at all. However, one should remember 
that the bound is computed on the upper quantile of the empirical computation time distribution, and most of the 
computations will finish before this bound. It is therefore reasonable to find a function that maps the margin on the unit 
interval, and the natural choice would be the sigmoid function 1/'1 + 𝑒+3!⋅5. with a negative argument 𝑥 = −θ2(t*) 
scaled with ϕ)	so that the utility will be 1/2 when the deadline is exactly met, and thereafter drop towards zero utility 
when the deadline is exceeded. Eliminating the derived context parameters using the formulas of Table 1, this yields the 
performance utility of Equation (1). 

𝑈6(𝒄(𝒕𝒌'𝟏) | 𝜽(𝑡!), 𝝓) =
1

1 + expV−ϕ) Wϕ( − V
θ((𝑡!) ⋅ θ)(𝑡!)

𝑐((t*'() ⋅ 𝑐)(𝑡!'()
+ θ-(𝑡!)XYX

(1)
 

Finally, there is a need to assess the cost of the deployment to be able to assess the cost utility dimension. The cost utility 
should be decreasing as the cost of the deployment increases. A negative exponential function seems a natural 
assumption; however, it must be normalized relative to the available budget such that it can be ensured that the utility 
value is unity when the cheapest possible virtual machine is used. Table 2 gives the concepts of the cost utility extending 
the vectors defined for the performance utility in Table 1. 
Table 2 - The concepts of the cost utility dimension of the data farming example 

Concept Symbol Formula 

Constants vector 𝝓 

Available budget 𝜙-  

Price of cheapest available worker VM 𝜙. 𝜙- ≥ ϕ. 

Scale parameter ϕ/ ϕ/ > 0 

Shape parameter ϕ0 ϕ0 > 0 

Maximum conserved budget ϕ1 = 𝜙- − 𝜙. 
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Concept Symbol Formula 

Application’s execution context parameter vector 𝜽(𝑡!) 

Price of the cheapest VM with the required 
number of cores 𝜃9(𝑡!) = Price'𝑐)(𝑡!'(). 

Currently conserved budget 𝜃(:(𝑡!) = ϕ- − 𝑐((𝑡!'() ⋅ θ9(𝑡!) 

A functional negative exponential family of functions based on the scale and shape parameter useable to represent the 
cost utility is given by Equation (2).  

𝑈;(𝒄(𝒕𝒌'𝟏) | 𝛉(𝑡!), 𝛟) = exp^
ϕ/

ϕ1
3"
−

ϕ/
θ(:(t*)3"

_ = 	exp `
ϕ/

[ϕ- − ϕ.]3"
−

ϕ/
[ϕ-– 𝑐((t*'() ⋅ Price(𝑐)(𝑡!'()]3"

b (2) 

These two dimensions are then combined into the overall utility for this class of applications as a simple affine 
combination where 𝑤 ∈ [0,1] is the weight given to the performance utility 

U(𝒄(𝒕𝒌'𝟏) | 𝛉(𝑡!), 𝛟) = 𝑤 ⋅ U6(𝒄(𝒕𝒌'𝟏) | 𝛉(𝑡!), 𝛟) + (1 − 𝑤) ⋅ U;(𝒄(𝒕𝒌'𝟏) | 𝛉(𝑡!), 𝛟) (3) 

A simulation experiment was set up to verify the above utility modelling. It is assumed that the duration of the jobs are 
uniformly distributed between one and 5 minutes, and that the number of jobs will take just above 5 hours to execute on 
a single core. The goal is to complete the jobs in one hour, ϕ( = 3600𝑠. The scale parameter for the performance utility 
was taken as ϕ) = 15. The available budget was taken to be ϕ- = 11 units, and the price of the cheapest virtual machine 
was set to unity, ϕ. = 1, and the scale and shape parameters ϕ/ = 10 and ϕ0 = 2. The number of cores is taken to be 
unity in this simulation so that only the number of worker instances, 𝑐(, is the only configuration variable. The price of 
this small machine equals the cheapest machine, which was set to unity. The performance dimension and the cost 
dimension of the utility is equally weighted, 𝑤 = 1/2.  

The result of the simulation is shown in Figure 2 for the ideal situation where the reconfiguration lag is zero.  An Auto-
Regressive Integrated Moving Average (ARIMA) model is fitted to the number of jobs remaining for the first 1100 
simulated seconds. Since the number of jobs remaining ideally should be on the straight line from the initial number of 
jobs to zero jobs at the expected deadline, the ARIMA model is a good fit for this example. The corresponding utility 
function values evaluated at each job completion event are shown in Figure 3, and the controller succeeds in keeping 
the utility value high with a preference for performance in the beginning shifting dynamically to a reduction of cost 
when it seems that the deadline most likely will be met. 
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Figure 2 - Simulation of the data farming deployment with the goal of finishing all simulation in one hour. The right-hand ordinate axis and the 
blue dots show the number of jobs remaining, and the right hand axis the staircase purple line show the number of cores used. The red dots are 
the predictions of an ARIMA model fitted to all the job completions over the first 1100s and the shaded area is the 95% prediction limits. 
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Figure 3 - The utility values computed at each job completion event are given as blue dots on the right hand ordinate axis plotted against the 
reconfiguration events and the number of cores given by the straight purple line valued on the right hand ordinate axis. 

4 Conditional execution context forecasting 

It is easy to be misled by the good prediction seen in Figure 2. The forecaster has an easy job since the number of jobs 
remaining is the output of the controlled system, i.e., the relation is a straight line and the slope of that line reflects the 
control actions taken by increasing or decreasing the number of cores to maximize the utility. The goal of the control 
actions is to ensure that the time it takes between two job completion events is approximately constant with an upper 
bound sufficiently short to complete the remaining jobs within the deadline. Figure 4 shows the Δ𝑡! at each event time 
together with the 95% quantile of the empirical Δ𝑡! distribution. The control is successfully achieving this result. The 
duration of each job was uniformly distributed between 60s and 300s with an expected duration of 180s, and the 
observed value of a between two job completion events is mostly below 100s as the effect of jobs executing in parallel. 
However, Figure 4 also shows that it is virtually impossible to forecast the Δ𝑡! values, and even forecasting the upper 
bound of the empirical distribution is very difficult. 

This relatively simple example reveals the fundamental issue: The monitored metric values are conditioned on the 
control actions. This means that:  

1. The forecaster can only use data for the current application configuration to predict the future execution context 
of the application, and this prediction will only be valid until the next reconfiguration. 

2. There are correlations between all the metric values used to measure the application’s execution context as they 
are all dependent on the application configuration.   

3. The dependency on the configuration reflects as a correlation between the configuration variables and the 
measured metric values. To illustrate: It does not help being able to predict confidently the system output, for 
this example the number of remaining jobs, unless one can also forecast the impact of control actions on the 
derivative of this curve to ensure that there will be zero remaining jobs predicted for at the time of the deadline. 
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Figure 4 - The 𝛥𝑡# events when a job completes as blue dots and the 95% quantile of the empirical 𝛥𝑡# distribution as a solid yellow line. The 
purple vertical lines are the reconfiguration events. 

The consequence of these observations is that one cannot predict individually the metric values of the application’s 
execution context. One must predict the entire context vector of all metric values at once, and it only makes sense to 
consider multivariate forecasting methods. Forecasting will be discussed in deliverable D2.2 Implementation of a 
holistic application monitoring system with QoS prediction capabilities. 

Furthermore, one cannot predict the execution context vector apart from the deployment configuration. In other words, 
it makes sense to talk about the ‘state’ of the application as one single vector consisting of both the context variables 
and the metric measurements, 𝒔(𝑡!) = [𝒄<(𝑡!), 𝛉<(𝑡!)]<. The implications of this conclusion for the optimization 
process and the solvers will be further discussed in deliverable D3.3 Optimized planning and adaptation approach. For 
the system identification and full system state forecasting we will investigate using Kálmán filters [31]. These have 
recently been proposed for Cloud data centre management [48]. Kálmán filters are the best-known estimators that take 
the system dynamics, i.e., the control actions and the actual application configuration, into consideration. Kálmán filters 
are also known to be globally optimal with minimum mean square errors and producing maximum likelihood system 
state estimates when the system dynamics are linear, and the noise components can realistically be assumed to be 
Gaussian. However, linearity cannot be assumed for the application dynamics, and one alternative is to investigate 
linearization approaches for hybrid systems, i.e., consisting of both discrete and continuous dynamics [33]. We will also 
investigate non-linear extensions to the Kálmán filters like recursive filtering [34], or if it is possible to model the system 
dynamics as a Wiener system with a linear and a non-linear part and use specialised recursive Kálmán type estimators 
for such systems [35]. 

The utility function is already a mapping from the configuration vector given the application’s current execution context 
vector to the unit interval, in other words, the full state vector, and so considering the full state vector as opposed to 
separating the configuration from the application’s execution context has no impact on the utility function modelling.  
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5 Proactive utility modelling 

As it has been discussed in Section 2.1, it is often difficult for the DevOps engineer to provide a utility function formula 
by hand. More specifically, a set of some high-level goals, such as keep the cost as low as possible or optimize the 
response time to the user, can be specified, but the way a change of VMs parameters influences the performance is 
difficult to foresee and define explicitly. What is more, these days the need for DevOps engineers is bigger than the 
number of qualified people such that low-code and high-level approaches must be developed. That is the reason for the 
investigation of high-level utility policies and more user-friendly utility function modelling as presented in this section.  

During the work on this deliverable, various ways of more user-friendly utility function modelling in terms of less effort 
to generate the utility function were investigated and preliminary evaluated. The first task was to indicate, with the help 
of MORPHEMIC use case partners, the most common and needed high-level policies for the user such as “optimize 
response time” or “minimize cost”. The results of discussions with the MORPHEMIC use case partners and with other 
potential MORPHEMIC adopters during workshops and webinars (see D7.1 Initial Dissemination and Communication 
Report and Plan) showed that even different software applications may have similar high-level optimization policies 
that should be eventually modelled as utility functions. During the work, seven utility functions for the most popular 
high-level policies were modelled. They are presented in Section 5.1. The directly modelled utility functions from high-
level policies can simply be re-used by the use case partners during writing the CAMEL models of their applications. It 
is important to notice that the number of templates can be easily extended in the future. 

The second approach is the marginal metric utility function modelling, which is based on measurement evaluation and 
can be useful for detecting the validity and optimality of the currently deployed configuration. It is described in Section 
5.2. The marginal metric utility function approach gives good results in terms of evaluating the change in the utility 
when new measurements are being gathered. This approach needs to be investigated further on how to include that kind 
of utility function in the reasoning process.  

The last evaluated approach called utility metric is the new methodology for representing user preferences and creating 
a utility function. This approach, presented in Section 5.3, gives some promising results while a respective Proof of 
Concept for the MORPHEMIC platform is being implemented according to the design described in sections 5.4, 6.1.1 
and 0.  

All presented approaches in this section therefore, they will be further investigated, and the result of the final evaluation 
will be provided in D2.4 Proactive utility: Algorithms and evaluation. 

5.1 High-level policies and overall goals set by the DevOps 

In this section, we present the template utility functions that have been directly modelled during the work on the project. 
The result of the discussions with the MORPHEMIC use case partners, and also discussions made during the webinars, 
workshops and presentations for potential customers and business adopters of the MORPHEMIC platform, showed that 
even different software applications may have similar high-level optimization policies that can be modelled as a similar 
(in terms of used metrics and function formula) utility function. During the initial discussions with the use partners and 
based on the experience from the previous projects, six utility functions for the high-level policies were claimed as the 
most popular and therefore further investigated. These directly modelled utility functions from high-level policies can 
simply be re-used by use case partners in their own CAMEL model. It is important to notice that all functions are 
modelled for one or two component applications and in case of more components, more decision variables can be used. 

5.1.1 Expected response time  

From the performance point of view, it would obviously be best if each application user had a dedicated virtual machine, 
as this would minimise the response time. However, this would inflate the cost of the deployment. Therefore, it is more 
appropriate to define the expected response time 𝑇 and the maximum acceptable response time 𝑇', which is a threshold 
that should not be breached. We should also specify the default timeout time, 𝑇=, after which the server returns the 
timeout and the request is not served at all. What is more, there is a need to measure the current average response time 
θ((𝑡!). The decision variables can be changed to be more complete, but for the simplification of the example, it is 
assumed that there are two main decision variables: 𝑐(, which is the number of instances, and 𝑐), which is the number 
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of cores available at each instance. If the application owner thinks that also other decision variables, such as the amount 
of memory, should be included, they can be incorporated in the same formula in a similar way. 

We propose to represent this utility function as a probability density function with bounded support, such as the Beta 
distribution, β(τ | 𝑎, 𝑏)	𝑓𝑜𝑟	τ ∈ [0,1], and given its two constant parameters 𝑎 and 𝑏 that are found with respect to 𝑇= 
and 𝑇 . The current configuration is defined as 𝑐∗((𝑡!), 𝑐∗)(𝑡!) . The performance utility can therefore be expressed as 
follows: 

υtime'𝒄(𝑡!'>) + 𝛉(𝑡!'>). = β `θ(
(𝑡!)
𝑇' ⋅ 𝑐∗((𝑡!) ⋅ 𝑐∗)(𝑡!)

𝑐((𝑡!'>) ⋅ 𝑐)(𝑡!'>)
 s ϕ(, ϕ)b /β'(ϕ(, ϕ)) 

Note that the above utility function is normalized by β'(𝑎, 𝑏) = max
?
𝛽(𝜏 | 𝑎, 𝑏) to ensure that the utility is a value 

within the unit interval. 

This function was used in the Secure Document use case used as an example by Horn and Skrzypek [6], and as an 
example of a typical e-commerce application by Horn and Rozanska [12]. 

5.1.2 Finish simulation on time 

This utility function can be used, for example, for all applications that are running simulations or that perform machine 
learning training. By the start of the computation, the number of training jobs N will be given. However, the time it takes 
to do one training will depend on the data being processed and the complexity of the model to be trained. Thus, at the 
event time point 𝑡! then k jobs have completed, and the number of jobs remaining, θ((𝑡!), will be a change in the 
application's execution context. It is also possible to measure the upper 1 − α/2,	 α <1 quantile of the empirical training 
time distribution, θ)(𝑡!). Thus, the predicted time needed for the parallel computations of the remaining training tasks 
is @$(B%)⋅@!(B%)

#$⋅#!
,	where the nominator is an upper bound for the time needed to complete the remaining jobs under the 

assumption that each calculation takes as long as the upper quantile currently observed. The denominator represents the 
number of available cores for the job as the number of worker machines 𝑐( times the number of cores per worker 𝑐). To 
know the predicted overall completion time for all calculations one must add to @$(B%)⋅@!(B%)

#$⋅#!
	 the total time one has spent 

for the jobs until now, θ-(𝑡!).  

The utility of the deployment should be close to unity for a given set of workers, 𝑐(, if this predicted overall completion 
time is less than the deadline. The farther beyond the deadline the predicted completion is, the lower the utility should 
be. Thus, a natural utility function form would be a sigmoid function 1/(1 + 𝑒+D5) with a negative argument x scaled 
with a so that the utility will be 1/2 when the deadline is exactly met. The performance utility for the timeliness of the 
application is then 

𝜐deadline(𝒄(𝑡!'>) | 𝛉(𝑡!'>), 𝝋) =
1

1 + expV−ϕ) Wϕ( − V
θ((𝑡!) ⋅ θ)(𝑡!)

𝑐((𝑡!'>) ⋅ 𝑐)(𝑡!'>)
+ θ-(𝑡!)XYX

 

where 𝜑{⃗  is a vector of fixed parameters; here, the target deadline and scaling parameter ϕ) > 0. The larger this scaling 
parameter is, the quicker will the utility value switch from unity to zero if the predicted overall completion time exceeds 
the soft deadline ϕ( = 𝑇'. 

It is worth mentioning that this type of the function is being used to optimize the Genome Big Data application14, and 
also by the MELODIC business user, the AI Investments15 company. There is also a work in progress model the utility 
function based on this function by MORPHEMIC use-case partner ICON. 

 
14 https://h2020.melodic.cloud/genom-data-processing-success-story/  
15 https://aiinvestments.pl/  
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5.1.3 Locality utility 

One may want to include the distance between two deployed components into account. It is possible by using the 
distance between two locations. There is a need to have decision variables 𝑐(, 𝑐) as latitude and longitude of the first 
component and 𝑐-, 𝑐. - latitude and longitude of the second component. Assuming that latitude and longitude is given 
in degrees, the distance between two deployed components can be calculated using spherical law of cosines: 
𝑎𝑐𝑜𝑠(sin(𝑐( ⋅ π/180) ⋅ sin(𝑐- ⋅ π/180) + cos(𝑐( ⋅ π/180) ⋅ cos(𝑐) ⋅ π/180) ⋅ cos(𝑐. ⋅ π/180 − 𝑐) ⋅ π/180)) ⋅ 𝑅  
and it can be normalized to be within zero and one. R is the earth’s radius, and the mean radius is 6371km. The locality 
utility is then: 

𝜐locality(𝒄(𝑡!'>) | 		𝝋) 	=	 

1/(1 + 𝑎𝑐𝑜𝑠(sin(𝑐( ⋅ π/180) ⋅ sin(𝑐- ⋅ π/180) + cos(𝑐( ⋅ π/180) ⋅ cos(𝑐) ⋅ π/180)
⋅ cos(𝑐. ⋅ π/180 − 𝑐) ⋅ π/180)) ⋅ 6371000) 

5.1.4 RAM usage 

Utility function that optimises the percentage RAM usage may have a form of the Beta distribution function, because 
Beta distribution is defined on an interval from 0 to 1. The desired value of RAM used should be specified by the user, 
probably around 80% of the total RAM available and when the RAM usage increases, the amount of RAM is not 
sufficient for the proper application execution.  When the RAM usage decreases, the utility is lower for the user because 
some of resources are wasted and the cost can be reduced. There is a need to include two decision variables: 𝑐( which 
is the number of component instances and 𝑐) which is the amount of RAM available in one component instance. What 
is more, the RAM usage on each instance θ( should be measured and the percentage RAM usage on all instances can 
be calculated as θ)(𝑡!) =

∑@$(B%)
#∗$(B%)⋅#∗!(B%)

. 

Assuming that the RAM usage scales linearly when adding more machines, it is possible to express the RAM usage 
utility as follows: 

υRAM'𝒄(𝑡!'>) + 𝛉(𝑡!'>). = β `θ)(𝑡!) ⋅
𝑐∗((𝑡!) ⋅ 𝑐∗)(𝑡!)
𝑐((𝑡!'>) ⋅ 𝑐)(𝑡!'>)

 s ϕ(, ϕ)b /β'(ϕ(, ϕ)) 

5.1.5 CPU usage 

The utility function that considers the CPU usage can be a very similar function to the previously described RAM usage 
utility. The decision variables can be 𝑐( which is the number of component instances and 𝑐) which is the number of 
cores available in one component instance. Measured CPU usage on the one instance is usually measured as an average 
value so θ((𝑡!) can be calculated as the average CPU usage for all instances. Assuming that the usage of the CPU scales 
linearly, the utility function can be defined as: 

υCPU'𝒄(𝑡!'>) + 𝛉(𝑡!'>). = β `θ((𝑡!) ⋅
𝑐∗((𝑡!) ⋅ 𝑐∗)(𝑡!)
𝑐((𝑡!'>) ⋅ 𝑐)(𝑡!'>)

 s ϕ(, ϕ)b /β'(ϕ(, ϕ)) 

5.1.6 Cores cost utility 

A negative exponential is a good candidate for the cost utility dimension as it increases when the cost decreases. It needs 
to be scaled so that the exponent is zero when the cost is at the minimum, and then the exponent should be more and 
more negative as the deployment cost increases. Let ϕ- be the available budget and ϕ. the price of the least expensive 
VM possible. Furthermore, it is reasonable to assume that the price of a machine is decided by the number of cores 𝑐) 
it offers as for many cases it is the most important factor. A reasonable cost utility function is therefore 

𝜐core-cost(𝒄(𝑡!'>) | 	𝝋	) = exp `
ϕ/

[ϕ- − ϕ.]3"
−

ϕ/
[ϕ-– 𝑐( ⋅ 𝑃𝑟𝑖𝑐𝑒(𝑐))]3"

b  

where ϕ/ > 0 is a scale parameter and ϕ0 > 0 is a shape parameter. Note that the denominator of each term of the 
exponent represents the remaining budget raised to the power of ϕ0. In the first term the remaining budget is defined 
by deploying a single virtual machine with the least cost, whereas in the second term the remaining budget is given by 
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the number of component instances multiplied by the price of each instance, i.e., the total cost of the deployment 
configuration. 

5.1.7 Cost per user 

This cost utility function improves the previously described function for cost utility, which only considers the cost per 
deployed core, i.e., it does not take into account the current workload and the number of potentially served users. The 
utility is best captured using the cost per served user as a parameter. We note that the same price for VM is considered 
to be a lower cost if more users can be served using this VM. Let 𝑃' and 𝑃+ be the maximum and the minimum prices 
for available VMs, 𝑐('  and 𝑐(+ be the maximum and the minimum number of application servers that are limited by 
the application owner, and 𝑃𝑟𝑖𝑐𝑒(𝑐)  be the price of deployment represented by 𝑐. The cost utility can be expressed as: 

υcost-user'𝒄(𝑡!'>) + 𝛉(𝑡!'>). =
θ)(𝑡!'>) ⋅ 𝑃' ⋅ 𝑐(' − (𝑃𝑟𝑖𝑐𝑒'𝒄(𝑡!'>)./(1 − θ-(𝑡!'>)))

θ)(𝑡!'>) ⋅ 𝑃' ⋅ 𝑐(' − 𝑃+ ⋅ 𝑐(+
 

which is a similar function to the standard normalization function '𝑥 − 𝑚𝑖𝑛(𝑥)./'𝑚𝑎𝑥(𝑥) − 𝑚𝑖𝑛(𝑥).. The numerator 
is changed to 𝑚𝑎𝑥(𝑥) − 𝑥 to reflect the fact that minimum price gives the highest cost utility. The main parameter is 
the price of configuration divided by the ratio of not served requests θ-(𝑡), which gives the information what is the 
deployment cost per served request. The ratio of served requests is calculated as 1 − θ-(𝑡). 

The maximum value is calculated as the most expensive deployment, which is the biggest possible number of the most 
costly VMs divided by the worst possible ratio of served requests, which is only one from all requests θ)(𝑡) received in 
one second: (𝑃' ⋅ 𝑐(')/[1 − (θ)(𝑡) − 1)/θ)(𝑡)]. After the transformation, the form of the maximum value is θ)(𝑡) ⋅
𝑃' ⋅ 𝑐('. The minimum price for the deployment is calculated as the minimum number of the least expensive machines 
divided by the best possible ratio of served requests that is one. 

5.2 Marginal metric-based utility function modelling  

As it was discussed in Section 2.1, it may be difficult for the DevOps engineer to manually define the utility function as 
a mathematical formula. In this section, we propose an alternative way to model and estimate the form of this utility 
function that can be then used in the optimization of Cloud application resources. Arguably, DevOps engineers and 
application owners have a better understanding of how the application utility will vary with changes in the application’s 
execution context, i.e., the monitored metric values. The metric-based approach is based on this observation. 

In this Section, it will be demonstrated that the approach for marginal metric utility functions in its present form can 
readily be used in Cloud resources optimization to detect the change in the quality of the currently deployed 
configuration. Moreover, the biggest advantage of this modelling is the fact that it can be extended and used as a part of 
MAPE-K loop in the optimization process. Hence, it is possible to make the reconfiguration decisions without having 
an explicit utility function formula. 

5.2.1 Marginal metric utility function 

Continuing the example from Section 2.1: the number of decoding server instances decides the cost, and the response 
time experienced for a user request indicates the application's performance. The DevOps engineer may relatively easily 
decide on the cost utility, and the performance utility as a function of the average response time per document requested 
by the application's users. 

Thus, the DevOps should be able to specify to the optimization platform their preferences regarding the values of such 
metrics. These metrics will define the execution context in which the Cloud resources optimization process operates. 
We are going to show that, given the set of functions 𝑢,'𝜃,(𝑡). specified for each metric 𝜃,(𝑡)  ∈  𝛉(𝑡) and a single 
optimal deployment configuration for a particular time point 𝑡! i.e. 𝒄∗(𝑡!), it is possible to calculate the utility as the 
execution context changes. For this, no explicit formula for the utility function 𝑈(𝒄(𝑡!) | 𝛉(𝑡!'>), 𝝋) is needed. In other 
words, in this approach the user is asked to specify the preferences regarding the values of the metrics rather than a 
complete utility function. 
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We show that the change in utility in the neighbourhood of a given optimal configuration depends only on the 
measurements and, therefore, can be defined by functions over the metrics. The utility function 𝑈(𝒄(𝑡!) | 𝛉(𝑡!'>), 𝝋)	is 
essentially a multivariate function of all configuration variables 𝒄(𝑡!) and the given metric 'variables' assigned the values 
of the metric measurements 𝛉(𝑡!). The linearised utility around an optimal configuration 𝒄∗(𝑡!) =
[𝑐((𝑡!), 𝑐)(𝑡!), … , 𝑐F(𝑡!)]< and the application execution context 𝛉(𝑡!) = [θ((𝑡!), θ)(𝑡!), … , θG(𝑡!)]< for which 
𝒄∗(𝑡!) is the optimal configuration is then given by the following equation: 

𝑈(𝒄(𝑡!'>) | 𝛉(𝑡!'>), 𝝋)

= 𝑈(𝒄∗(𝑡!) | 𝛉(𝑡!), 𝝋) +�
∂𝑈
∂𝑐,
s
H𝒄∗(B%),𝛉(B%)L

[𝑐,(𝑡!'>) − 𝑐∗,(𝑡!)]
F

,M(

+�
𝜕𝑈
𝜕𝜃,

s
H𝒄∗(B%),𝛉(B%)L

[𝜃,(𝑡!'>) − 𝜃,(𝑡!)]
G

,M(

 

Here, the vertical bar after the partial derivatives means that the derivative is evaluated at the given point. By assumption 
𝒄∗(𝑡!) = 𝑚𝑎𝑥#⃗(B%)∈&𝑈'𝒄+ 𝛉(𝑡!). and therefore, by the definition of optimality, the derivatives of any function at its 
optimal point are zero: NO

N#$
= NO

N#!
= ⋯ = NO

N#'
= 0 This means that Equation 1 reduces to: 

𝑈(𝒄(𝑡!'>) | 𝛉(𝑡!'>), 𝝋) = 𝑈(𝒄∗(𝑡!) | 𝛉(𝑡!), 𝝋) +�
𝜕𝑢,
𝜕𝜃,

s
H𝒄∗(B%),𝛉(B%)L

[𝜃,(𝑡!'>) − 𝜃,(𝑡!)]
G

,M(

 

and the change in the utility can therefore be expressed as  

𝑈(𝒄(𝑡!'>) | 𝛉(𝑡!'>), 𝝋) 	− 	𝑈(𝒄∗(𝑡!) | 𝛉(𝑡!), 𝝋) =�
𝜕𝑢,
𝜕𝜃,

s
H𝒄∗(B%),𝛉(B%)L

[𝜃,(𝑡!'>) − 𝜃,(𝑡!)]
G

,M(

 

Since the true utility function is unknown, one can freely define the partial derivatives of this unknown function. Given 
the utility functions defined for each of the metric values, 𝑢,(θ,), these can be taken as the marginal utilities: 

𝜕𝑈
𝜕𝜃,

s
H𝒄∗(B%),𝛉(B%)L

≝		
𝜕𝑢,
𝜕𝜃,

s
H𝒄∗(B%),𝛉(B%)L

 

Thus, it enables us to model fully the unknown utility in the neighbourhood of the optimal configuration 𝒄∗(𝑡!) for 
	𝛉(𝑡!). It may seem surprising that the change in utility is not depending on 𝒄(𝑡!'>). However, an optimal configuration 
is optimal until it must be changed as a result of a changed application execution context. The change in the application 
execution context is driven by the evolution of the metric values, and thus it is natural that 𝒄(𝑡!'>) = 𝒄∗(𝑡!) as the time 
moves on until the change of the utility indicates that a new optimal application configuration must be found. 

5.2.2 Algorithm for modelling user’s utility function 

The proposed method for retrieving DevOps engineer's preferences in accordance with the application's optimization 
goals is presented schematically presented algorithmically. 
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Table 3 - Algorithm 1 for modelling user's utility function 

1  Input: 𝒇 = [𝑓(, 𝑓), … , 𝑓/]<  

2  Result: the utility function: 𝑈'𝒄(𝑡!'>) + 𝛉(𝑡!'>).  

3  𝛉(𝑡)  ←The user defines metrics that are measured  

4  𝛉(𝑡!) ←	The metric values are measured at time 𝑡!  

5  For ( θ, ∈ 𝛉 ) {  

6       𝑗 ← The user chooses the index of the best 𝑓  

7       𝑎, 𝑏  ← The user defines  𝑎, 𝑏   

8       𝑢,(θ,) = 𝑓P(θ,  | 𝑎, 𝑏)  

9  }  

10  𝒄∗(𝑡!  ) = max
𝒄∈&

𝑈 ( 𝒄  |  𝛉(𝑡!) ) ← The user indicates optimal configuration  

11  (Optional) 𝑈: ← The user assigns the value of 𝒄∗(𝑡!)  

12  If (𝑈: exists){  

13  𝑈'𝒄∗(𝑡!) + 𝛉(𝑡!). = 𝑈:  

14  } Else {  

15             𝑈'𝒄
∗(𝑡!) + 𝛉(𝑡!). = �∑ 𝑤,G

,M( ⋅ 𝑢,'𝜃,(𝑡!).� ←The utility value of 
𝒄∗(𝑡!) is calculated 

 

16  }  

17  
Return 𝑈'𝒄(𝑡!'>) + 𝛉(𝑡!'>). = �∑ 𝑤,G

,M( ⋅ 𝑢,'𝜃,(𝑡!).� +
∑ QR(

QS(
G
,M( |H𝒄∗(B%),𝛉(B%)L[𝜃,(𝑡!'>) − 𝜃,(𝑡!)] 

 

First, the DevOps engineer is asked to define the vector of metrics, 𝛉(𝑡), that is considered important. Then a template 
utility function for each metric θ,(𝑡) ∈ 𝛉(𝑡) must be chosen. We describe the details of the five proposed template 
functions, 𝒇 = [𝑓(, 𝑓), … , 𝑓/] in Section 5.2.3 where we discuss their desirable properties. However, this approach is 
flexible, and any new template function can be added to 𝒇 without any changes in Algorithm provided this new function 
is differentiable. A template function typically has some shape parameters that the DevOps engineer must tune and fix 
for the function to represent the univariate utility function for the metric value argument. Then, a time point 𝑡! must be 
fixed as the origin of the linearised utility, and the measurements 𝛉(𝑡!) must be obtained for this time point. The DevOps 
engineer must state what is the optimal application configuration 𝒄∗(𝑡!) for this particular time point and, 
correspondingly, the perceived application utility value, 𝑈(𝒄∗(𝑡!) | 𝛉(𝑡!), 𝝋) ∈ [0,1]. It should be noted that fixing this 
utility value at one of the extremes will have a bearing on the template utility function forms and possibly the time of 
validity of the linearization because the ∑ NR(

NS(
�
H𝒄∗(B%),𝛉(B%)L

[𝜃,(𝑡!'>) − 𝜃,(𝑡!)]G
,M(  must be strictly positive if 

𝑈(𝒄∗(𝑡!) | 𝛉(𝑡!), 𝝋) = 0 or strictly negative if 𝑈(𝒄∗(𝑡!) | 𝛉(𝑡!), 𝝋) = 1. If the DevOps engineer can assign a weight 
of importance, 𝑤, ∈ [0,1], to the utility of measurement 𝜃,(𝑡) such that the weights sum to unity, ∑ 𝑤,, = 1, it is 
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recommended to take the utility value as the affine combination of the utilities of the metric values, 
𝑈(𝒄∗(𝑡!) | 𝛉(𝑡!), 𝝋) = ∑ 𝑤,G

,M( ⋅ 𝑢,'𝜃,(𝑡!).. 

Note that ∑ 𝑤,G
,M( ⋅ 𝑢,'𝜃,(𝑡!). is the standard arithmetic mean if all the weights are equal, 𝑤, = 1/𝑚. The utility 

function can be calculated as 

𝑈(𝒄(𝑡!'>) | 𝛉(𝑡!'>), 𝝋) = ��𝑤,

G

,M(

⋅ 𝑢,'𝜃,(𝑡!).� +�
𝑑𝑢,
𝑑𝜃,

G

,M(

|H𝒄∗(B%),𝛉(B%)L[𝜃,(𝑡!'>) − 𝜃,(𝑡!)] 

5.2.3 Function shapes creation 

We propose to use three most popular function shapes from Chang [36], i.e., a piecewise linear utility function [37], a 
constant function, and the 'S-shaped' function [38] that can be used in Algorithm presented in Section 5.2.2. The latter 
will be represented as the differentiable sigmoid function. On top of that, we propose to use two functions that we call 
the U-shaped utility function and reversed U-shaped utility function. To calculate the change in the utility, there is a 
need to know the derivatives of 𝑢(θ), and we also provide these derivatives for the proposed template functions.  

 

 
Figure 5 - Template S-shaped ,		reversed S-shaped, reversed U-shaped  and U-shaped functions 

5.2.3.1 S-shaped sigmoid function 

The sigmoid function 𝑓( can be seen as a similar function to the standard 'S-shaped' utility function, which is one of the 
most popular shapes of utility functions [38]. It is just modified to be differentiable. This function has a shape presented 
on Figure 5 where θ is the chosen metric: 𝑓((θ) = 1 − �1 + 𝑒3!(@+3$)/3$�

+(
. When choosing this function, there is a 

need to indicate two points: 𝑎 where the utility value is close to 1 and 𝑏 < 𝑎 where the value should be 0.5: 𝑓((𝑎) =
1 − ϵ	 and	 𝑓((𝑏) = 0.5 . Given these two points: 𝑎 and 𝑏, it is possible to calculate the function form and adjust the 
ϕ(, ϕ) parameters by solving the following set of equations: 

1 − �1 + 𝑒3!(D+3$)/3$�
+(
= 1 − 𝜀		
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and 1 − �1 + 𝑒U!(V+U$)/U$�
+(
= 0.5 

which yields: ϕ( = 𝑏 and ϕ) = ln'(1 − ϵ)/ϵ. ⋅ 𝑏/(𝑎 − 𝑏). 

The overall function has a form: 

𝑓((θ) = 1 − �1 + 𝑒H(@+V) WX[((+Z)/Z]L/(D+V)�
+(

 

while the derivative of 𝑓((θ) is: 

∂𝑓(
∂θ

=
ln �1 − 𝜖𝜖 � �1 − 𝜖𝜖 �

(S+V)/(D+V)

(𝑎 − 𝑏)V�1 − 𝜖𝜖 �
(S+V)/(D+V)

+ 1X
) 

5.2.3.2 Reversed S-shaped function 

As can be seen of Figure 5, it is a very similar function to S-shaped sigmoid function: 𝑓)(θ) = �1 + 𝑒3!(@+3$)/3$�
+(

. 
The only difference is that for bigger value of θ, the function value decreases. When choosing this function, there is a 
need to indicate two points: 𝑎 where the utility value is close to 1 and 𝑏 > 𝑎 where the value should be 0.5: 𝑓)(𝑎) =
1 − ϵ and 𝑓)(𝑏) = 0.5. Given these two points: 𝑎 and 𝑏, it is possible to calculate the function form and adjust the 
ϕ(, ϕ) parameters by solving the set of equations: 

�1 + 𝑒3!(D+3$)/3$�
+(
= 1 − 𝜀 and �1 + 𝑒3!(V+3$)/3$�

+(
= 0.5 

which yields ϕ( = 𝑏 and ϕ) = ln'ϵ/(1 − ϵ). ⋅ 𝑏/(𝑎 − 𝑏). Therefore, the overall template function has the 

form: 

𝑓)(θ) = �1 + 𝑒H(@+V) WX[Z/((+Z)]L/(D+V)�
+(

 

with the derivative: 

∂𝑓)
∂θ

= −
ln � ϵ

1 − ϵ� �
ϵ

1 − ϵ�
(@+V)/(D+V)

(𝑎 − 𝑏) `� ϵ
1 − ϵ�

(@+V)/(D+V)
+ 1b

) 

5.2.3.3 Reversed U-shaped function 

Reversed U-shaped function 𝑓-(θ) is another proposition for the utility function template. The intuition behind it is 
simple: there is a metric value that the user expects to be achieved, and the more the measured values are distanced from 
the expected value, the lower the utility is for the application owner. This function has a shape which can be seen on 
Figure 5, where θ is the chosen metric:  𝑓-(θ) = 𝑒+H(@+3$)!L/3!. Having this function chosen as a template, there is a 
need to indicate two points: 𝑎 where the utility value is equal to one, and 𝑏 < 𝑎 where the value is close to zero: 𝑓-(𝑎) =
1 and 𝑓-(𝑏) = 𝜀. 

For values equally distanced from point 𝑎, the value will be proportionally lower in both directions. Given these two 
points, 𝑎 and 𝑏, it is possible to calculate the function form and adjust the ϕ(, ϕ) parameters by solving the set of 
equations: 

𝑒+\H(D+3$)]
!^/3! = 1 and 𝑒+\H(V+3$)]

!^/3! = 𝜖 

which yields ϕ( = 𝑎 	and ϕ) = −(𝑏 − 𝑎))/ ln 𝜖 
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The overall template function has the form: 

𝑓-(θ) = 𝑒WX Z(@+D)!/(V+D)! 

with the derivative:  

∂𝑓-
∂θ

=
2(𝜃 − 𝑎)(ln 𝜖)𝜖(S+D)!/(V+D)!

(𝑏 − 𝑎))
 

5.2.3.4 U-shaped function 

U-shaped function has a shape presented on Figure 5. It is a fourth new proposition for the utility function template. 
This function has a form: 𝑓.(θ) = 1 − 𝑒+H(@+3$)!L/3!. 

Having this function chosen as a template, there is a need to indicate two points: 𝑎 where the utility value is equal to 
zero, and 𝑏 < 𝑎 where the value is close to one: 𝑓.(𝑎) = 0 and  𝑓.(𝑏) = 1 − 𝜖. Given these two points: 𝑎 and 𝑏, it is 
possible to calculate the function form and adjust the ϕ(, ϕ) parameters by solving the set of equations: 

1 − 𝑒+H(D+3$)!L/3! = 0 

and  1 − 𝑒+H(V+3$)!L/3! = 1 − 𝜖 

that yield: ϕ( = 𝑎 and ϕ) = (𝑏 − 𝑎))/ ln 𝜖. 

The overall template function has a form: 

𝑓.(θ) = 1 − 𝑒+ WX Z(@+D)!/(V+D)! 

with a derivative: 

∂𝑓.
∂θ

=
2(θ − 𝑎)(ln ϵ)ϵ+(@+D)!/(V+D)!

(𝑏 − 𝑎))
 

5.2.3.5 Constant shaped function 

The constant function is a very simple function that can be used to indicate that the measured metric 𝜃 is not important 
for the user in terms of the utility. Such metrics could be useful to indicate the execution context, but not to evaluate the 
application's utility. The good example of such metric is the number of requests that are coming to the application in 
one minute. This value does not depend on the parameters of the deployment configuration, but it can be used to indicate 
the context for the optimization. The shape of the function is flat in 𝑎 as utility value. If the user chooses this function 
as a template, there is a need to indicate one value: 𝑎 ∈ [0,1], which is achieved independently on the 𝜃 value. Therefore, 
the overall template function has a form: 𝑓/(θ) = 𝑎 with the derivative equal to zero. 

5.2.4 Secure document storage example 

The marginal metric utility function approach is illustrated with an example based on the software application to store 
documents in a secure way introduced in Horn and Skrzypek [6] and used by Horn and Rozanska [12]. 

5.2.4.1 Description 

The software uses a two-level encryption, and its owner has the deployment goal to provide the best possible 
performance to the users. The performance is measured in terms of the average response time to the users, but the 
deployment should be done at the minimal price per served request. To maximize the utility of the user, a cloud 
optimization platform has two main decision variables: 𝑐(, which is the number of instances, and 𝑐), which is the number 
of cores available at each instance. It is assumed that one document decoding thread runs on one core only. Hence, the 
number of 'servers' seen from the user's perspective is equal to the number of cores. Furthermore, let us assume the 
execution context of the application is defined by the following metrics: 

1. θ((𝑡), which is the average response time to the user, 



D2.3 Proactive utility- Framework and approach 

 

Page 29 

 

   

 

2. 𝜃)(𝑡), which is the number of requests that are coming to the application per second, and 

    3.   θ-(𝑡), which is the fraction of requests per second that are unacceptably delayed. 

The utility functions will be modelled using marginal metric utility function modelling approach. According to this 
approach, there is no need for direct modelling of the utility function formula. It is enough to specify functions for each 
θ,(𝑡) ∈ 𝛉(𝑡) for each dimension; in this example the performance and cost: 𝑢('θ((𝑡). ↦ [0,1], 𝑢)'θ)(𝑡). ↦ [0,1], 
and 𝑢-'θ-(𝑡). ↦ [0,1]. Given that, together with optimal configuration 𝒄∗(𝑡!) for time 𝑡!, it is possible to calculate the 
change in the utility in terms of each dimension and combine it together to calculate the overall utility. There is a need 
to choose template functions that can be used as 𝑢(, 𝑢), 𝑢- and indicate parameters as described in Table 3 - Algorithm 
1 for modelling user's utility function. 

5.2.4.2 Performance utility 

Performance utility considers the average response time to the user and for this purpose only the average response time 
metric θ( is used. The marginal metric utility functions for other metrics should be constant. 

A function that evaluates the average response time θ( should return the highest possible value if the average response 
time is equal to the best possible value which is 𝑇_, i.e., the average response time of directly served requests. It should 
have the lowest value when the average response time is significantly greater than the response time 𝑇' that makes the 
request considered as delayed. These are the two points that the user should define to calculate the shape of function 
𝑢('θ((𝑡).. The template function 𝑓- is considered as the most suitable in this case: 

𝑢('θ((𝑡). = 𝑓-'θ((𝑡) + 𝑎 = 𝑇_,  𝑏 = 𝑇'. = 𝑒WX ZH@$(B)+<)L
!
/H<*	+<)L

!
 

The number of requests θ)(𝑡) and the fraction of delayed requests θ-(𝑡) just give the execution context for the user in 
terms of the performance utility. It means that it is the objective information that should be considered, but every number 
of users gives the same performance utility for the user if they are properly served. Therefore, the marginal metrics 
utility functions can be modelled as constant functions 𝑓/: 

𝑢)'θ)(𝑡). = 𝑢-'θ-(𝑡). = 𝑓/(θ)(𝑡) | 𝑎 = 1) = 1 . 

The derivatives of all marginal metric utility functions for the performance dimension are: 

∂𝑢(
∂θ(

'θ((𝑡). =
2'𝜃((𝑡) − 𝑇_.𝜖HS$(B)+<)L

!
/H<*	+<)L

!

	'𝑇' − 𝑇_.
 

while the derivatives of 𝑢)(θ)), 𝑢-(θ-) are zero. 

Consequently, we define the performance utility as: 

𝑈time �𝑐(𝑡!'>) � θ{⃗ (𝑡!'>)� = 𝑢('θ((𝑡!). +
∂𝑢(
∂θ(

|(θ((𝑡!)	[θ((𝑡!'>) − θ((𝑡!)] 

where the first part of the sum is 𝑢('θ((𝑡!). with the assumption that weights 𝑤), 𝑤- are zero. 

5.2.4.3 Cost utility 

Cost utility should express the desire of the application's owner to minimize the cost for the served user. In this cost 
utility function, only two metrics are involved: θ)(𝑡), which is the number of requests that are coming to a server in one 
second, and θ-(𝑡), which is the fraction of requests that are delayed per second. It is possible to assume that the marginal 
metric utility function for the average response time 𝑢('θ((𝑡). in cost dimension is constant: 

𝑢('θ((𝑡). = 𝑓/(θ((𝑡) | 𝑎 = 1) = 1.  

A function that evaluates the number of users θ) gives the execution context for the user. Every number of users gives 
the same utility for the user if they are properly served. Therefore, the value can also be modelled as constant function 
𝑓/: 𝑢)'θ)(𝑡). = 𝑓/(θ)(𝑡) | 𝑎 = 1) = 1. 
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The evaluation of the fraction of delayed requests θ-(𝑡) should reflect the fact that there is some fraction 𝑅, which is 
expected, while any value above 𝑅' is not acceptable, because the profit from serving users is significantly lower. It is 
possible to use template function 𝑓): 

𝑢-'θ-(𝑡). = 𝑓)(θ-(𝑡) | 𝑎 = 𝑅,  𝑏 = 𝑅') = �1 + 𝑒a(@+(B)+b
*) WX[Z/((+Z)]^/(b+b*) 

+(.
 

The derivatives of all marginal metric utility functions for cost dimension are zero for 𝑢('θ((𝑡). and 𝑢)'θ)(𝑡). and for 
𝑢-'θ-(𝑡).: 

∂𝑢-
∂θ-

'θ-(𝑡). = −
ln � 𝜖

1 − 𝜖� �
𝜖

1 − 𝜖�
(S+(B)+b*)/(b+b*)

(𝑅 − 𝑅') `� ϵ
1 − ϵ�

(@+(B)+b*)/(b+b*)
+ 1b

) 

We define the cost utility can be defined as: 

𝑈price'𝒄(𝑡!'>) + 𝛉(𝑡!'>). = 𝑢-'θ-(𝑡!). +
∂𝑢-
∂θ-

'θ-(𝑡!).[θ-(𝑡!'>) − θ-(𝑡!)] 

5.2.4.4 Evaluation 

We present the evaluation of the marginal metric utility function approach. For evaluation purposes, we provide a 
numerical example based on the Queuing framework. We compare this approach with classical direct utility function 
modelling, which was used, among others, in the MELODIC project. The comparison is based on the utility function 
value derived from using two approaches and its accuracy in representing the changes in the execution context and the 
optimality of the deployed configuration.  

Since the user requests enter a First-In-First-Out queue it is natural to represent the application as an open queuing 
system with one or several servers. The number of requests will certainly vary over the day, but for the sake of exposition 
here it will be understood that the daily variation can be split into periods with an approximately constant average level 
of requests per second, θ)¡¡¡. Without further knowledge of a real application, one may model the number of requests per 
second as Poisson distributed with the given average, θ)(𝑡!'>) ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛θ)¡¡¡. Interpreting this as a counting process 
for the request arrivals, the time between two requests will be a random time exponentially distributed with the expected 
number of requests per seconds as parameter, 𝑡!'( − 𝑡! ∼ 𝐸𝑥𝑝	θ)¡¡¡. Similarly, it is reasonable to expect that the average 
time to serve one request measured in seconds can be estimated as 𝑇_, and that the time taken to serve one request is 
again exponentially distributed with the server capacity measured in requests per second, 𝐸𝑥𝑝'1/𝑇_..  

With the above considerations the application can be modelled as an	𝑀/𝑀/𝑠 queue where 𝑠 is the number of servers, 
allowing the reuse of some standard results for this queue model [39]. One may assume that the average requests per 
second, θ)¡¡¡, will stay constant long enough for the queue to be considered to be in a stationary state. The expected 
utilization of each server is obviously the expected arrivals divided by the expected server handling taking into account 
that there are 𝑠 servers available to handle the requests, 

ρ =
θ)¡¡¡

𝑠/𝑇_
=
θ)¡¡¡	𝑇_
𝑠

< 1 

where the upper limit is necessary to ensure that the servers eventually are able to catch up with the requests, i.e., the 
queue length will be finite. This implies that 𝑠 > θ)𝑇_, which can be used to find the minimum number of servers 
needed. Furthermore, the average response time to the user is the expected waiting time in the queue 

plus the expected service time,  

θ(¡¡¡ =
(de),f-

d!dH(/<)L((+e)!
+ 𝑇_ where the probability of an empty queue is given by 𝑝: = § (de),

d!((+e)
+∑ (de)'

F!
d+(
FM: ¨

+(
. 
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A request that is not serviced by time threshold, 𝑇' will eventually be flagged as delayed. The time budget for a decoding 
can be split into two parts, 𝑇' = 𝑇h' + 𝑇_' where 𝑇h' is the upper time limit allowed for queueing and 𝑇_' is the maximum 
time allowed for the server decoding the document. The probability that the request is queued longer than 𝑇h' is given 
by 

𝑃𝑟�𝑇h > 𝑇h'� = 1 − 𝑃𝑟�𝑇h ≤ 𝑇h'� =
(𝑠ρ)d𝑝:
𝑠! (1 − ρ)

𝑒+d((+e)<.
*/<) 

and the server delay probability is given by the cumulative density function for the exponential distribution 
𝑃𝑟[𝑇_ > 𝑇_'] = 1 − Pr[𝑇_ ≤ 𝑇_'] = 𝑒+<)

*/<). 

Since the service time is independent of how long the request has been queued, the probability of exceeding the delay 
threshold is the sum of these two probabilities. The fraction of delayed requests, θ-(𝑡) equals this joint probability. 

A server is a single core that serves requests sequentially. When a server performs well, the average response time is 
𝑇_ = 89ms = 89 ⋅ 10+-s, which means that a single server saturates when the average number of requests per second 
is θ)¡¡¡ = 10-/89 = 11.23. According to the common knowledge16, the expected response time to the user should be 
around 𝑇 = 0.1s, while after 1 seconds a request should be considered delayed. Since the document decoding time is 
independent of the number of servers, the threshold for delayed requests is fully allocated to the queueing delay, 𝑇h' =
10s. The acceptable percentage of delayed requests can be assumed to be 1%, which is still acceptable for the user, 
while anything more that 70% is definitely not acceptable, so 𝑅 = 0.01, 𝑅' = 0.7. 

Consider the situation at 𝑡( with moderate load, θ)¡¡¡ = 100 requests per second. The minimum number of servers is then 
9. However, the average response time 𝜃(¡¡¡ at 0.945s will then be almost 10 times the response time requirement. The 
optimal number of servers can then be found from setting 𝑇 = θ((𝑡() = 0.1s, and solve 𝜃(¡¡¡ for the number of servers, 
showing that this requirement can be met with 𝑐(∗ = 12 servers. The performance metric values with increasing load are 
given in Table 4. 
Table 4 - The performance metric values with increasing load 

Time Load θ)(𝑡) Servers 𝑐(∗ Utilization ρ Average response θ((𝑡) Delayed requests θ-(𝑡) 

𝑡( 100 12 0.741667 0.0962045 1.87 ⋅ 10+(0 

𝑡) 110 12 0.815833 0.105346 6.67 ⋅ 10+() 

𝑡- 120 12 0.89 0.130056 2.20 ⋅ 10+1 

𝑡. 130 12 0.964167 0.267191 6.87 ⋅ 10+- 

𝑡/ 131 12 0.971583 0.320972 0.0192672 

𝑡0 132 12 0.979 0.412911 0.0540442 

𝑡1 133 12 0.986417 0.605511 0.151525 

𝑡2 134 12 0.993833 1.26196 0.424647 

 
16 https://www.dnsstuff.com/response-time-monitoring 
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The change in the utility can be expressed locally around the point consisting of the optimal solution 𝒄∗ found for the 
set of measurements 𝛉(𝑡!) in terms of the measurements 𝛉(𝑡!'>) = [θ((𝑡!'>), θ)(𝑡!'>), θ-(𝑡!'>)]< according to the 
previous theory as 

 𝑈(𝒄(𝑡!'>) | 𝛉(𝑡!'>), 𝝋)	− 	𝑈(𝒄∗(𝑡!) | 𝛉(𝑡!), 𝝋) = ∑ NR(
NS(
�
H𝒄∗(B%),𝛉(B%)L

[𝜃,(𝑡!'>) − 𝜃,(𝑡!)]G
,M( . 

We calculate the change in the value of utility for the example modelled and using numerical values presented above. 
Results of all calculations are presented in Table 5. 

We compare our approach with the directly modelled utility function from Section 5.1. We calculate utility function 
values separately for the performance and for the cost utility dimensions. To calculate the utility in the performance 
dimension, there is a need to set parameters 𝜙(, 𝜙) of the beta distribution function presented in Section 5.1.1. The 
highest possible utility value should be achieved for the expected response time 𝑇 = 0.1𝑠. Therefore, we set ϕ( =
1.5, ϕ) = 5, then β'(1.5,5) = 2.81665. We calculate: 

υtime'𝒄∗(𝑡() + 𝛉(𝑡(). = 'β(0.0962045 | 1.5,5)./2.81665 = 0.994509 

For the cost dimension, we put parameters 𝑐(+ = 1, 𝑐(' = 15, 𝑃+ = 0.5, 𝑃' = 10, 𝑃𝑟𝑖𝑐𝑒'𝑐∗(𝑡(). = 4 ⋅ 12. We assume 
that values of θ-(𝑡!'>) that are below 10+(: are zero. Values for υtime'𝒄∗(𝑡() + 𝛉(𝑡))., … , υtime'𝒄∗(𝑡() + 𝛉(𝑡2). and 
υprice-user'𝒄∗(𝑡() + 𝛉(𝑡))., … , υprice-user'𝒄∗(𝑡() + 𝛉(𝑡2). are presented in Table 5. It is possible to calculate the overall 
utility values calculated using affine combination of both functions. For the simplification of calculations, we assume 
that weights for both dimensions are equal, 𝑤( = 𝑤) = 0.5. 
Table 5 - The utility function values for time and price dimensions for direct utility function modelling and marginal metric utility function 
modelling 

Time Load 𝑈time 𝑈price υtime υuser-price 

𝑡( 100 0.9971276 0.9906382 0.994509 0.99683322777 

𝑡) 110 0.9898405245 0.990638 0.999220 0.99712112488 

𝑡- 120 0.970152832 0.99063798641 0.992572 0.99736103721 

𝑡. 130 0.86089052075 0.99021369574 0.716318 0.99754702257 

𝑡/ 131 0.818040509 0.98944802112 0.578783 0.997534644 

𝑡0 132 0.744478811075 0.98730012752 0.366839 0.9974624445 

𝑡1 133 0.59133406075 0.9812795281 0.0905592 0.997189298 

𝑡2 134 0.06830832 0.96441099445 0.0254211 0.99683322777 

To summarize, numerical results clearly show that the approach presented in this deliverable gives promising results 
that are comparable with results derived from direct utility modelling. The modelled situation started at 𝑡( with highly 
evaluated utility values of metrics 𝛉(𝑡(), while for 𝑡2 the measured metric values indicated that the utility of the 
application had significantly decreased and the drop in the utility of the optimal configuration for 𝑡( can be noticed in 
both approaches. 

Even though the values of utility look similar for both approaches, it is important to notice that it is not necessary to 
calculate the difference between 𝑈'𝒄∗(𝑡() + 𝛉(𝑡!'>). and υ'𝒄∗(𝑡() + 𝛉(𝑡!'>).. The direction of the change in the utility 
should be evaluated and should correctly indicate the need of an adaptation of the application configuration to a new 
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configuration that is optimal for the current execution context. The proposed metric based utility is as good as the more 
complex direct utility modelling for this purpose. 

The utility value for the changed context 𝛉(𝑡!'>) stay in the standard unit interval in the presented example. However, 
this property is not assured in general by our modelling approach. By definition, the linearisation method works in the 
neighbourhood of 𝑐∗(𝑡(). A change in the utility that makes the new utility out of the interval [0,1] is a strong indication 
that a new optimal configuration must be computed because the current configuration is no longer optimal. This is a 
feature that is not clearly defined when using direct utility function modelling, and an out-of-bound utility value can be 
used as a trigger for optimization. Moreover, the biggest advantage of this modelling is the fact that it can be extended 
to support this type of utility function also in the reasoning process. Hence, it is possible to make the reconfiguration 
decisions without having an explicit utility function formula. This work will be proceeded in the coming months and 
reported in Deliverable D2.4 Proactive utility: Algorithms and evaluation. 

5.3 Template Cloud utility function construction  

The most important aspects for the user can be represented as performance and cost metrics of the application and the 
goal of the Cloud application optimization is to ensure the best feasible value of a single metric or the best feasible trade-
off between many metrics. Based on this observation, we propose a simple and expressive way for constructing the 
utility function that can be used in the optimization of Cloud application resources. It is important to notice that this 
approach can be seen as an alternative approach for the one presented in Section 5.2 but both approaches can be designed 
to be complementary in the future. 

5.3.1 Utility metric 

We use the term utility metric to indicate metrics 𝝂(𝑡!) 	∈ 𝛉(𝑡!) that are not only a part of the execution context, but 
also a part of the utility function. There is a need to predict or estimate what will be the value of the utility metric when 
the deployment configuration changes. This is the role of the metric estimator in MORPHEMIC called the Performance 
Module (see Section 6.2.3 and D3.3 Optimized planning and adaptation approach for more details). It is important to 
notice that the metric estimator can gather feedback regarding estimated metric value when the proposed configuration 
is deployed which allows learning the correlation between decision variables, predicted execution context, and future 
utility metric value. 

The standard utility function [cite:HornRozanska19] as a weighted sum combination is called affine if the weights 𝒘 
sum to unity: 𝑈(𝒄(𝑡!'>) | 𝛉(𝑡!), 𝒘) = ∑ 𝑤Q𝑢Q'𝒄 + 𝛉(𝑡).=

QM(  where ∑ 𝑤,=
QM( = 1. We propose a different form of a 

utility function that is able to express the same user preferences which takes into consideration only the performance 
metrics calculated as a function of decision variables and the execution context: 

𝑈(𝝂(𝑡!'>) | 𝒄(𝑡!'>), 𝛉(𝑡𝑘+ℎ),𝛉(𝑡!), 𝒘) = �𝑤Q𝑢Q'𝜈Q(𝑡!'>) + 𝒄(𝑡!'>), 𝛉(𝑡𝑘+ℎ),𝛉(𝑡!).
=

QM(

 

where  ∑ 𝑤,=
QM( = 1. 

Moreover, it should be still possible for the user to provide the utility metric formula directly in CAMEL, which makes 
these improvements compatible with the MELODIC platform. It makes this approach more flexible and general. 

5.3.2 Utility function construction 

There is a simple way to retrieve from the user the application optimization preferences. The steps needed to be 
performed are described as Algorithm 2 and they contain specifying the utility metrics, specifying the shape of the utility 
function by choosing from the template g for each metric together with a default utility metric formula that will be used 
for the initial deployment of application and also in case of not sufficient predictions from the metric estimator. 

Algorithm 2 for constructing utility metric utility function 

Input: 𝒈 = [𝑔(, 𝑔), … , 𝑔2]<  

Result: the utility function: 𝑈(𝝂(𝑡!'>) | 𝒄(𝑡!'>), 𝛉(𝑡!), 𝒘) 
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𝛉(𝑡)  ←The user defines metrics that are measured 

𝝂(𝑡) ← The user defines utility metrics 𝝂(𝑡!) 	∈ 𝛉(𝑡!) 

For ( 𝜈Q ∈ 𝝂 ) { 

     𝑗 ← The user chooses the index of the best 𝑔 

     𝑎, 𝑏  ← The user defines  𝑎, 𝑏  

νQ(𝑡!'>) = 𝑓'𝒄(𝑡!'>), 𝛉(𝑡!'>), 𝛉(𝑡!). ← The user defines how νQ is calculated  

     𝑢Q(νQ) = 𝑔Q(νQ  | 𝑎, 𝑏) 

 𝑤Q ←  The user defines the proportional importance of νQ in the overall utility 

} 

𝑟𝑒𝑡𝑢𝑟𝑛	𝑈(𝝂(𝑡!'>) | 𝒄(𝑡!'>), 𝛉(𝑡!), 𝒘) = �𝑤Q𝑢Q'𝜈Q(𝑡!'>) + 𝒄(𝑡!'>), 𝛉(𝑡!).
=

QM(

 

As the input to Algorithm 2, we propose eight template function shapes but this list can be easily extended with new 
template function forms. Four of them have been already described in Section 5.4.3 as 𝑓(, 𝑓), 𝑓-, 𝑓., but for the purpose 
of the utility metric utility function construction, they will take as argument ν instead of the predicted execution context 
𝑚𝑒𝑡𝑟𝑖𝑐	θ. The next four are the linear versions of similar functions such as linear function 𝑓/, 𝑓0, V-shaped function 
𝑓1, 𝑓2. Utility metric utility function construction does not require any restriction on the shape of the function, the only 
restriction relates to the domain of the function values, so all templates can be freely combined, and it is also possible 
to use non-differentiable functions. 

5.3.2.1 S-shaped sigmoid function templates 

The S-shaped sigmoid function can have the same formula as defined in Section 5.2.3.1 and Section 5.2.3.2. The only 
difference is the fact that instead of using metrics from the execution context, only the utility metrics of the application 
can be the argument. Therefore, we define 𝑔( and 𝑔) as:  

	
𝑔((ν) = 𝑓((θ) 	= 	1 − �1 + 𝑒H(i+V) WX[((+Z)/Z]L/(D+V)�

+(
 

𝑔)(ν) = 	𝑓)(θ) = �1 + 𝑒H(i+V) WX[Z/((+Z)]L/(D+V)�
+(

 

5.3.2.2 U-shaped function templates 

The U-shaped function templates have the formula presented in Section 5.2.3.3 and 5.2.3.4. However, the argument for 
the function is changed to be utility metric, not the general metrics and therefore we define them as 𝑔- and 𝑔. 

𝑔-(ν) 	= 	𝑓-(θ) = 𝑒WX Z(i+D)!/(V+D)! 

𝑔.(ν) 		= 	 𝑓.(θ) = 1 − 𝑒+ WX Z(i+D)!/(V+D)! 

5.3.2.3 Linear function templates 

The linear function is the simplest possible version of the utility function. It has a form 𝑔/ = ϕ(ν + ϕ) or for reversed 
function: 𝑔0 = −ϕ(ν + ϕ). This function may be used to indicate that the lower or higher the value is, the better for the 
user. When choosing this function, there is a need to indicate two points: 𝑎 when the value is zero and 𝑏 when the value 
is one for the standard linear utility function, and 𝑎 with utility value one, 𝑏 with utility value equal to zero for the 
reversed linear function. It is important to notice that for all values behind [𝑎, 𝑏], the utility value will be constantly 
equal to zero or one. Given these two points, it is possible to calculate the function form and adjust the ϕ(, ϕ) parameters 
by solving the following set of equations for 𝑔/:  
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ϕ(𝑎 + ϕ) = 0	and ϕ(𝑏 + ϕ) = 1 that leads to ϕ( =
(

V+D
 and ϕ) =

+D
V+D

. The linear utility function has therefore a form: 

 𝑔/ =
(

V+D
(ν − 𝑎). 

 

𝑔/(ν) = µ

0	, ν	 ≤ 	𝑎
1, ν	 ≥ 	𝑏

	
1

𝑏 − 𝑎
(ν − 𝑎), 𝑎 > ν < 𝑏	

 

Analogically, it is possible to solve the set of equations for 𝑔0, where the user specifies the points: 𝑎 where the utility 
value is one, and 𝑏 where the utility is zero: −ϕ(𝑎 + ϕ) = 1	and −ϕ(𝑏 + ϕ) = 0 that leads to ϕ( =

(
V+D

 and ϕ) =
V

V+D
. 

𝑔0(ν) = µ

1	, ν	 ≤ 	𝑎
0, ν	 ≥ 	𝑏

	
1

𝑏 − 𝑎
(𝑏 − ν), 𝑎 > ν < 𝑏	

 

5.3.2.4 V-shaped function templates 

The V-shaped function is the alternative for the U-shaped and it can be used if the user would like to express more strict 
boundaries for acceptable performance metric values, for instance, for V-shaped function there is only one utility metric 
value ν where the utility is zero, and for reversed V-shaped, only one value of ν where the utility is one.  

By choosing this template of V-shaped function, there is a need to specify three values 𝑎	 < 	𝑏 < 	𝑐: 𝑎 where the utility 
is one, 𝑏 where the utility is zero, and 𝑐 where the utility is one. For the reversed V-shaped function, the values in points 
𝑎 < 𝑏 < 𝑐 is different: for 𝑎 and 𝑐 the utility is zero, for 𝑏 it is one. The shape of the function between values 𝑎, 𝑏, 𝑐 can 
be calculated by solving similar set of equations as for 𝑔/	𝑎𝑛𝑑	𝑔0. The overall formulas are: 

𝑔1(ν) =

⎩
⎪
⎨

⎪
⎧

1	, ν	 ≤ 	𝑎	 ∨ 	ν	 ≥ 	𝑐
1

𝑏 − 𝑎
(𝑏 − ν), 𝑎 > ν ≤ 𝑏

	
1

𝑐 − 𝑏
(ν − 𝑏), 𝑏 > ν < 𝑐

 

 

 

𝑔2(ν) =

⎩
⎪
⎨

⎪
⎧

0	, ν	 ≤ 	𝑎	 ∨ 	ν	 ≥ 	𝑐
1

𝑏 − 𝑎
(ν − 𝑎), 𝑎 > ν ≤ 𝑏

	
1

𝑐 − 𝑏
(𝑐 − ν), 𝑏 > ν < 𝑐

 

5.3.3 Utility metric in reasoning 

To optimize Cloud application resources, there is a need to know how the change in the application deployment 
configuration will influence the future metric measurements. In other words, there is a need to know what is the 
correlation between the execution context, the decision variables, and future measurements. It is a big challenge and a 
complex problem because there may be no data about the performance of the application running on a specific 
configuration. For the current utility function modelling used in the MELODIC platform, this correlation has to be 
specified by the DevOps engineer. In the utility metric approach, this difficulty is a part of the optimization platform 
responsibility, so the part of the MORPHEMIC optimization loop. 
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The utility metric utility function 𝑈(𝝂(𝑡!'>) | 𝒄(𝑡!'>), 𝛉(𝑡!), 𝒘) can be used in the reasoning to guide the decision 
about the reconfiguration of the Cloud application. The reasoning is done for the given execution context that can be 
measured 𝛉(𝑡!) or predicted for 𝑡!'>. A solver is solving the Constraint Problem and each proposed candidate solution 
𝒄(𝑡!'>)	can be passed to the metric estimator that will predict utility metric values '𝜈Q(𝑡!'>) + 𝒄(𝑡!'>), 𝛉(𝑡!).. After 
that, the utility function value for the proposed candidate solution can be calculated and return to the solver. 

It is important to notice that the metric estimator (in MORPHEMIC called the Performance module, described in Section 
6.2.3) can learn the correlation between the predicted execution context, configuration, and future utility metrics values.  
It is possible because when the optimization platform makes the decision and performs the reconfiguration, the real 
measurements of utility metrics are collected, so it is possible to calculate the error between the estimated and real value 
and continuously gather new knowledge. Therefore, for the initial deployment, the default utility metric formula can be 
used but the formula calculated by the metric estimator can improve this default formula over time. 

Consider, for example, the utility metric that estimates the time required to complete the remaining trainings proportional 
to the number of trainings left to do, i.e., it is a linear function of remaining tasks. When a training is completed, one 
has the observation of the event time and the corresponding total time for all the trainings completed. Hence, the 
relations among the involved metric values can be inferred from historical data from the past time points.  A benefit of 
learning the model is that it can be used also for time points where only some of the metric values are measured. Every 
time point corresponds to the measurement event for at least one metric value, but it could be only one value measured 
at the event and the remaining metrics will keep their values until next time points when their values will be measured.  

Another approach for the usage of the utility metric in the reasoning process is to create a new proactive solver that will 
both solve the Constraint Problem and estimate utility metrics values to learn the correlations internally. This idea and 
the solver are described in D3.3 Optimized planning and adaptation approach.  

5.3.4 Evaluation 

The evaluation of the utility metric concept has proceeded with the data gathered from simulations on the MELODIC 
use case: Secure Documents and Big Data Genome application. The data is available in the repository OW2 GitLab 
repository17. Note that the same data is being used to train the Forecasting module that will be reported in D2.2 
Implementation of a holistic application monitoring system with QoS prediction capabilities, and therefore, the detailed 
description of the dataset will be provided in that deliverable. 

The Secure Document application, as it was described in section 5.2.4, uses a two-level encryption, and its owner has 
the deployment goal to provide the best possible performance to the users. The performance is measured in terms of the 
average response time to the users, but the deployment should be done at the minimal price per served request. To 
maximize the utility of the user, a cloud optimization platform has two main decision variables: 𝑐(, which is the number 
of instances, and 𝑐), which is the number of cores available at each instance. It is assumed that one document decoding 
thread runs on one core only. Hence, the number of 'servers' seen from the user's perspective is equal to the number of 
cores. Furthermore, two parameters were measured: 

• θ((𝑡), which is the average response time to the user, 
• 𝜃)(𝑡), which is the number of requests that are coming to the application per minute. 

The simulation parameters of coming users were defined once and repeated for various configurations described in 
Table 6. 

 

 

 
17 https://gitlab.ow2.org/melodic/time-series-data/-/tree/time-series-experiments/time-series-data 
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Table 6 -  Simulation parameters of coming users 

Number of users New number of users Reconfiguration Instances 

0 to 10 Random interval of time 
according to Poisson 
distribution with lambda 
3000 milliseconds and 
constant delay offset 30000 

No, 1 instance 2 cores and 8 GB of 
memory 

0 to 40 Random interval of time 
according to Poisson 
distribution with lambda 
1500 milliseconds and 
constant delay offset 15000 

No, 1 instance 2 cores and 8 GB of 
memory. 

0 to 40 

 

Random interval of time 
according to Poisson 
distribution with lambda 
3000 milliseconds and 
constant delay offset 30000 

No, 1 instance 2 cores and 15 GB of 
memory 

0 to 150 Random interval of time 
according to Poisson 
distribution with lambda 
3000 milliseconds and 
constant delay offset 30000 

No, 1 instance 4 cores and 30 GB 

0 to 10 Random interval of time 
according to Poisson 
distribution with lambda 
3000 milliseconds and 
constant delay offset 30000 

 

No, 2 instances 2 cores and 8 GB of 
memory 

0 to 150 Random interval of time 
according to Poisson 
distribution with lambda 
3000 milliseconds and 
constant delay offset 30000 

Yes, min number of 
machines was 1, maximum 
20 

4 cores and 30 GB of 
memory 

0 to 150 Random interval of time 
according to Poisson 
distribution with lambda 
3000 milliseconds and 
constant delay offset 30000 

 

Yes, allowed, min number 
of machines was 1, 
maximum 10 

4 cores and 30 GB of 
memory 

 

One can easily notice that the number of requests 𝜃)(𝑡) cannot be seen as the optimization goal because it is independent 
from the application deployment configuration. Therefore, 𝜃)(𝑡) should be a part of the execution context and it should 
be predicted as a simple time series. However, θ((𝑡) is exactly the application owner’s goal and it is a performance 
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metric of the application. It is a utility metric and the utility function described in Section 5.1.1 can be easily transformed 
into the following utility metric function: 

υtime'𝒄(𝑡!'>) + 𝛉(𝑡!'>). = 𝛽 `θ(
(𝑡!)
𝑇' ⋅ 𝑐∗((𝑡!) ⋅ 𝑐∗)(𝑡!)

𝑐((𝑡!'>) ⋅ 𝑐)(𝑡!'>)
 s ϕ(, ϕ)b /β'(ϕ(, ϕ)) 	→	

= 	𝑈'θ((𝑡!'>)+ 𝒄(𝑡!'>), 𝛉(𝑡!), θ)(𝑡!'>). = 	𝛽 `θ(
(𝑡!'>)
𝑇'  s ϕ(, ϕ)b /β'(ϕ(, ϕ)) 

In this case, the main challenge is to provide a prediction for θ((𝑡!'>) for given 𝒄(𝑡!'>), 𝛉(𝑡!), θ)(𝑡!'>). For this initial 
evaluation, we made predictions for horizon 3 which means 3 time points into the future on data from experiments 18 
and compare them with real measured values. The part of the experiment dataset is shown in Table 7.  
Table 7 - Initial evaluation of predictions 

Time Number 
of 
servers 
𝑐((𝑡!) 

Number of 
requests per 
minute 
θ)(𝑡!) 

Average 
response 
time to the 
user θ((𝑡!) 

Predicted 
number 
of 
requests 
per 
minute 
θ)(𝑡!'>) 

Proposed 
number 
of 
servers 
𝑐((𝑡!'>) 

Average 
response 
time to 
the user 
θ((𝑡!'>) 

Result:  

Predicted 
average 
response time 
to the user 
θ((𝑡!'>) 

Result: 
Calculate 
average 
response 
time to the 
user (Marta) 

92 2 106 6 366 2 1072 1017 6 

93 2 143 5 494 12 955 998 0.83 

95 2 470 1072 531 20 540 18 107 

96 12 565 955 422 20 10 14 573 

For the requests prediction 3 models were tested: N-BEATS [40], ETS (exponential smoothing) [41] and SARIMA 
(Seasonal Autoregressive Integrated Moving Average)[42]. Methods were evaluated using rolling window strategy, grid 
search hyperparameter optimization and MAE (mean absolute error) metric on validation set. The best model (N-
BEATS) requests predictions were then used for average response time to the user. 

For average response time to the user the training was performed using TFT [43] model with Optuna hyperparameters 
optimization. The best set of hyperparameters was chosen basing on MAE metric. Horizon was equal to 3 minutes.  
Train, validation, test (values 0: 12) were used.  Dataset was prepared with the given columns: Average response time 
to the user (target), number of instances, predicted requests, cores, memory.  Final score was reported on the test set. 
The accuracy measured as MAE:12. The results that can be seen in the last two columns in Table 6, clearly show that 
the calculated average response time based on manually defined correlation, that the average response time scales 
linearly, gives worse results than the result derived by the metric estimator. 

5.4 Utility function modelling in CAMEL 

5.4.1 Background 

CAMEL is multi-domain-specific-language (multi-DSL) able to cover the modelling of all relevant domains related to 
multi-cloud application management. This covers also the requirement and metric domains where CAMEL is able to 
specify SLOs and utility functions as well as their constituting parts, such as metrics and (metric) variables. CAMEL is 
described in more details in D1.1 Data, Cloud Application & Resource Modelling. Focusing on utility functions, these 

 
18 https://gitlab.ow2.org/melodic/time-series-data/-/tree/master/time-series-data/secure-document%E2%80%8B/deployment-reconfiguration-
range-1-to-20/2021-02-05%20to%202021-02-05/v1.0%20raw%20data 
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can be expressed as metric variables with (mathematical) formulas that involve both metrics as well as other metric 
variables, where such formulas can include any kind of mathematical function. A metric variable can be considered as 
a dynamic variable, which needs to be computed during the optimization of application deployment. In contrast to 
metrics, which need to be computed during application execution. Metric variables can be discerned into two main 
categories: (a) dynamic node candidate variables; (b) utility functions and their parts. 

Dynamic node candidate variables map to computations over characteristics of node candidates (like number of cores) 
with respect to application components or the whole application. They can be single or composite. When they are single, 
they directly map the value of a specific characteristic of a currently selected node candidate. For instance, the number 
of cores for the node candidate that has been selected in the current solution for a specific application component. 
Composite node candidate variables are computed from other node candidate variables by applying a certain 
mathematical formula. For instance, we might need to compute the minimum over the number of cores across all node 
candidates for a specific application component.  

Utility functions (or their parts) can be considered as composite, dynamic variables which are computed via formulas 
over other dynamic (metric) variables as well as metrics. They play the most crucial role in application deployment 
optimization as they enable us to compute the utility for a certain candidate solution (i.e., a solution comprising a 
particular node candidate per each application component).  

In order to raise the level of understanding of the reader, we supply a specific example of a utility function for computing 
the utility of an application based on cost: 

U = exp(α / (B-P)^β - α / (B-c1*c2)^β) 

where α, β, Β are constants with B being the user budget, P is the price of the least expensive node candidate (let’s 
assume a single-component application or an application with only one component having to be deployed in the cloud), 
c1 is the number of instances for the component (according to the current candidate solution being examined) and c2 is 
the price of the selected node candidate.  

This utility function would be expressed as a metric variable with the above formula. Such a function does not need to 
be split into specific function parts but does include some node candidate variables, which need to be separately 
expressed. These are P, c1 and c2. P is a composite node candidate variable (with minimum as its formula over the price 
of each node candidate) while c1 and c2 are single node candidate variables. Thus, as it can be easily seen, CAMEL is 
able to easily address the modelling of such a utility function. 

5.4.2 The Problem 

The main issue involved in utility function specification comes with the reliance on metrics, which map to different 
measurements depending on the current examined configuration/candidate solution. Thus, metrics that depend on the 
candidate solution. For such metrics, we need to either have a workaround formula for their computation or rely on 
prediction techniques in order to compute their expected measurement. In other words, we do need to somehow compute 
the values of these metrics such that a different utility value can be computed for each candidate solution when such a 
solution differs from the current application configuration. Without this ability, there will be no possibility to actually 
conduct the utility-based optimization of the application deployment, especially as such metrics are related to major 
performance aspects of an application.  

In order to better comprehend the above issue, we provide an example of a new utility function, which is performance-
oriented. The formula of this function is computed as follows: 

U = 1 / (1 + exp(α*(CT-Tmax) / Tmax)) 

where α, Tmax are constants with the second representing a deadline given by the user and CT is the completion time 
as a metric. As it can be easily seen, when we need to conduct the deployment reasoning for the respective application, 
we rely on a specific measurement for CT. As there is nothing in the utility function that depends on the node candidates 
and/or the current candidate solution, the utility value will be always constant. So, there is no possibility to find an 
alternative application configuration that might be better from the current one. Even worse, the first application 
configuration will be randomly selected as there will be no measurement for Tmax initially.  
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Based on the above situation, there is a need to find a mechanism such that we can differentiate the utility in the presence 
of metrics in the utility function that depend on the actual application configuration. 

5.4.3 The Solution 

In the past, PaaSage19 and MELODIC relied on a workaround where the metric appearance in utility functions was 
replaced with specific formulas that have clear dependency on the current candidate configuration through the use of 
metric variables. The main idea was to have a way to direct the evaluation of the utility function towards more powerful 
configurations when the current performance was not good and the less powerful configurations when the current 
performance was too good. In this respect, in the previous, performance-oriented utility function, CT could be replaced 
with (𝜃( ⋅ 𝜃)/𝑐( ⋅ 𝑐)) + 𝜃-, where 𝜃, are metrics (𝜃( represents number of trainings left to do, 𝜃) the percentile bound 
on task execution and 𝜃- the elapsed time, as it was described in the Section 5.1.2) while ci are metric variables (c1 
represents the number of instances and c2 the number of cores).  

The problem with the above workaround is that leads to an imprecise utility function, which can lead to non-optimal 
solutions with the inevitable negative impact of continuous application reconfiguration to continuously adapt them. 
Fortunately, MORPHEMIC now supplies the ability to estimate the value of metrics based on the current candidate 
configuration/solution through the use of prediction techniques. This gives the possibility to utilise such predictions in 
deployment reasoning for more precisely computing the respective application (deployment) utility. However, as 
predictions are not always possible, especially when the number of past measurements is insufficient, there is still the 
need to apply the workaround, mainly in the initial application execution period until a sufficient measurement number 
is obtained. 

Based on the above need, CAMEL has been extended in order to enable the modelling of another category of metric 
variables which we can call prediction variables. Such metric variables still incorporate the formula attribute in order to 
have the ability to apply workarounds when the number of past metric measurements is insufficient but also refer to the 
respective metric that needs to be predicted through being associated with the corresponding metric context (that covers 
all necessary details for the computation of the metric, such as schedule, window and object context).  

As such, by considering the original utility function, we could introduce a metric variable called CTV which incorporates 
the formula (𝜃( ⋅ 𝜃)/𝑐( ⋅ 𝑐)) + 𝜃- while it also refers to the CT metric. Initially, when the number of past CT 
measurements is not adequate, the formula will be utilised for the computation of the CTV value for each candidate 
solution. Then, when such a number is adequate, the prediction of CT will be incorporated during the utility function 
evaluation as the value of CTV. 

5.4.4 Solution Realisation 

In order to realize such a solution CAMEL has been slightly updated through one extension and one modification. The 
extension concerns incorporating into the MetricVariable class an optional property referring to a MetricContext, thus 
enabling to associate metric variables with metrics whose value can be predicted by the Melodic platform, especially 
when such values depend on the current application configuration being examined during application deployment 
reasoning. By enhancing the MetricVariable class, then, it is up to the modeller to decide for a metric variable whether 
it should utilise no formula (so as to model single node candidate variable), only the formula (so as to model composite 
node candidate variables and utility functions) or both the formula and the metric context reference (so as to model 
prediction variables).  

The CAMEL modification refers to removing the currentConfiguration attribute from the MetricVariable class as 
anything that refers to the current application configuration (i.e., the one currently being applied) should be considered 
as a metric. This was actually an ambiguity in previous versions of CAMEL as it enabled to specify metrics that map to 
the current application configuration in two ways, via normal metrics and metric variables.  

Both CAMEL updates are visualised in the following Figure 6.  

 
19 https://paasage.ercim.eu/  



D2.3 Proactive utility- Framework and approach 

 

Page 41 

 

   

 

 
Figure 6 - The two CAMEL updates on MetricVariable class 

We now conclude this section by demonstrating how easily CAMEL can completely express a utility function, the 
performance-oriented aforementioned one, through the visualization of a small CAMEL specification fragment in 
CAMEL’s textual syntax shown on Figure 7 below. 

 

 
Figure 7 - CAMEL description fragment focusing on expressing a specific utility function 



D2.3 Proactive utility- Framework and approach 

 

Page 42 

 

   

 

6 Architecture: Proactive adaptation approach 

6.1 General component architecture and process flow 

The goal of the proactive adaptation feature is to provide the ability to optimize the application’s deployment taking 
into account a future window of time. This means that the application will be optimized for future runtime conditions. 
This also allows the MORPHEMIC platform to be proactive, and to make the necessary adaptations before any SLO 
violation occurs, instead of simply reacting to these violations once they occur.  

This goal is particularly important from a practical point of view. The reconfiguration of an application takes time, 
usually a couple of minutes. After that, the runtime requirements may change, which can lead to another reconfiguration. 
There are some critical applications, for instance, from the medical or networking fields that must run with minimal 
downtime. Thanks to this feature, the MORPHEMIC platform can proactively adapt application resources to prevent 
situations that are critical and ensure the expected performance of the application. The proactive adaptation feature is 
the goal of Work Package 2, and it is realized by the process which includes the following activities: utility function 
modelling and creation, forecasting of the execution context for the running application and finally, the proactive 
optimization that leads to a reconfiguration of Cloud application resources. The logical components architecture for 
proactive adaptation is presented in Figure 8. 

The implementation follows the fundamental MORPHEMIC architecture principles that each framework should be 
separated by interfaces and in case of component reuse, dedicated instances of the component will be created (see D4.1 
Architecture of pre-processor and proactive reconfiguration). Forecasters and Solvers can be easily plugged in and 
involved in the adaptation loop. New components are marked in yellow colour, the components that are already present 
in the MELODIC platform are marked in blue colour. Other artifacts such as the CAMEL Model and the deployed 
application have a green colour. 

It is important to notice that the proactive adaptation can be seen as an extension of the current reasoning process. That 
is the reason why MELODIC components are being extended to handle predicted metric values in addition to real-time 
metric values. Further, there are new components that handle the persistent collection of metric data, forecasting, and 
metric estimation. Another new component that is developed in the scope of this feature is the Utility Function Creator, 
which produces a utility function formula from high-level utility policies defined by a user, as described in sections 5.3 
and 5.4, where this formula can then be incorporated in the CAMEL model of the respective application. The detailed 
description of both extended MELODIC components and new MORPHEMIC components is provided in section 6.2.  
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Figure 8 - Proactive adaptation 
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6.1.1 Utility function creation sequence 

 
Figure 9 - Sequence of utility function creation 

The sequence of utility function creation can be seen on Figure 9 and it is proceeded as follows: 

1. The user defines a CAMEL Model for his/her application, without specifying the utility function, using the 
CAMEL Designer or any textual editor.  

2. Then, using the MORPHEMIC GUI, the user chooses metrics that are utility metrics, see detailed description 
of this concept in sections 5.3 and 5.4. 

3. For each utility metric the user specifies: 
a. The shape of the utility function 
b. Two metric values where the utility function value should be equal or close to 1 and where it should be 

equal or close to 0 
c. Optionally: a default utility metric formula that will be used for the initial deployment and in case of 

not sufficient predictions; some examples of default formulas can be seen in Section 5.1. 
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4. Then, the user specifies the weights of each utility metrics. These weights should represent the importance of 
each utility metric and the sum of weights is equal to 1. 

5. After that, Utility Function Creator calculates and creates the overall utility function formula and stores it in the 
CAMEL Model. 

6.1.2 Proactive optimization sequence 

 
Figure 10 - Sequence of proactive optimization 

The sequence of proactive optimization can be seen on Figure 10 and is proceeded as follows: 

1. The CP Generator creates a CP Model, the initial deployment is processed normally (as in MELODIC) with 
the usage of default metric values and default formulas for utility metrics. To simplify, this step is not seen on 
Figure. 

2. After the successful deployment of the application, measurements are started to be collected. 
3. Persistent Storage stores time-series and prepares datasets (different for each Forecasting Method) 
4. Once a minimum volume of datasets is available the Prediction Orchestrator is informed and certain or all 

forecasting methods plus the Performance Module are triggered 
5. Prediction Orchestrator ensembles predicted metrics from all Forecasting Methods and publishes orchestrated 

results as a vector of predictions and also communicates forecasting results to the Severity-based SLO-violation 
Detector. 
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6. Severity-based SLO-violation Detector generates predicted SLO violations and publishes it to EMS. 
7. Metasolver receives predicted metric values and updates the metric values in the Constraint Problem using 

predicted metric values and starts the reconfiguration. 
8. The reasoning and the rest of the reconfiguration process are proceeded as in MELODIC. 

It must be noted that the detailed description of this sequence and of the respective components will be provided in D2.2 
Implementation of a holistic application monitoring system with QoS prediction capabilities. 
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6.1.3 Utility value calculation 

 
Figure 11 - Sequence of the utility function calculation 

The sequence of utility function calculation can be seen on Figure 11 and is executed as follows: 

1. Solver starts solving using predicted metric values as the execution context.  
2. Each proposed candidate application configuration is evaluated by the Utility Generator. 
3. The Utility Generator fetches the Node Candidates from Cache and the utility function from the application’s 

CAMEL Model. 
4. If the utility function formula does not include any utility metric, the utility function is calculated and returned 

to the Solver. 
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5. If the utility function formula includes utility metrics, then for each utility metric the Performance Module is 
invoked, and steps 6-7 are repeated. 

6. The Utility Generator invokes the Performance Module to estimate the utility metric value for the candidate 
application configuration.  

7. The Performance Module fetches the historical metric values and deployed configurations from the Persistent 
Storage, estimates the utility metric value and then returns the estimated value to the Utility Generator.  

8. The Utility Generator calculates the value of the utility function for a given candidate application configuration 
and returns it to the Solver.  

9. Solver compares the value of the utility function for given candidate application configuration to the current 
best one. If the current candidate application configuration has better utility, then it replaces previous best one.  

10. Steps from 2 to 9, that can be seen on Figure 11, are repeated until the best candidate application configuration 
is found.  

11. The solution of the Constraint Problem is passed from the Solver to the Metasolver. 

6.2 Key components 

The proactive adaptation feature is the goal of Work Package 2 and a part of goal of Work Package 3. It is realized by 
the processes of utility function modelling and creation, forecasting of the execution context for running application and 
finally, the proactive optimization that leads to a reconfiguration of Cloud application resources. This section provides 
the description of all components involved in the Proactive utility framework, where for some components it includes 
references to other deliverables with a more detailed description. 

6.2.1 Utility Function Creator 

The Utility Function Creator is a new module; its main role is to create the utility function formula and store it into the 
application’s CAMEL model. The part of this module is integrated with the MORPHEMIC GUI, and it allows the user 
to specify preferences regarding application optimization visually. This process is described in Section 6.1.1. The 
internal architecture for this module is presented in Figure 12. It contains a UI component that is integrated with 
MORPHEMIC UI and that is responsible for the interactions with the user. It also communicates with another UI 
Component, the Template Shapes Provider, which provides the visualization of template functions. The core component 
is called Controller; it orchestrates the process of utility function creation by invoking: 

• Metric CAMEL analyser – responsible for analysing the CAMEL Model to retrieve the defined metrics 
• Weights Calculator – responsible for calculating the weights of each utility dimension. It may use a simple 

weighted sum method, but it can also be extended to use various methods to retrieve and calculate weights 
• Formula Creator – responsible for creating the utility function formula for the given utility metrics, templates, 

parameters, and weights 
• Function Optimizer – responsible for optimizing the parameters of the utility function. It aims for improving the 

initial utility function created by the user by making it more accurate 
• CDO Service – responsible for storing the created utility function formula in the CAMEL Model and then this 

updated model to the CDO repository 
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Figure 12 - MORPHEMIC UFC internal architecture 

6.2.2 The Utility Generator 

The Utility Generator is a MELODIC component that is responsible for calculating the utility function value. It was 
described in detail in MELODIC Deliverable D3.5 MELODIC Upperware [45]. The Utility Generator receives the 
available Node Candidates offers, the Constraint Problem and utility function, and calculates the utility for the proposed 
Constraint Problem solution candidate (i.e., the candidate configuration of the application deduced by the Solver during 
deployment reasoning). For proactive optimization purposes, the Utility Generator will be extended to communicate 
with the Performance Module to retrieve utility metrics estimations. 

6.2.3 Performance Module 

Improving the utility value requires the adjustment of variables involved in the utility function such that the application 
presents a satisfying performance and an acceptable cost. When the costs are determined by the Cloud provider 
according to the resource allocated to the application, the performance of the application is not only determined by the 
resource allocated but also, among others, by the workload handled, represented as the execution context in 
MORPHEMIC. Therefore, optimizing the application proactively consists of exploiting the relationship between the 
predicted application workload, the resources allocated, and the performance. Two approaches can be used for 
establishing the relationship referred lately. The first approach can be based on a mathematical model called a utility 
function as described in Section 5.1. The second approach consists of mimicking the application behaviours by 
correlating the application workload indicators, the resource allocated to the application (configuration), and the 
application performance. This concept, described in Section 5.3, is used and implemented in the MORPHEMIC project 
exploiting machine learning methods. The performance module outputs an application performance metric. 
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6.2.4 Persistent Storage 

6.2.3The persistent storage stores and provides a retrieval mechanism for all metrics (including performance indicators) 
exposed by managed applications and execution platforms (infrastructure running applications) as shown in Figure 13. 

 
Figure 13 - Persistent storage interaction 

As can be seen in the above figure, the persistent storage maintains a connection to EMS for consuming all metrics 
involved into the utility function and constraints of the managed application. These metrics (1) are transformed and pre-
processed for being exposed as a dataset (2). The internal architecture and design details are elaborated in deliverable 
D2.1 Design of a self-healing federated event processing management system at the edge. Metrics stored in the persistent 
storage can be used for creating datasets for machine learning operations by using an API (Application Programming 
Interface) implementing all required functionalities. This API known as dataset maker can be imported as a library by 
all forecasters and other MORPHEMIC’s components requiring the creation of datasets. 
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6.2.5 Forecasters 

MORPHEMIC will allow the plugging in of different forecasting methods for issuing useful metrics’ predictions that 
will drive the proactive reconfiguration of applications. Each forecasting method will be introduced in the architecture 
as a distinct forecaster. These forecasters, as subcomponents of the forecasting module, will handle the publishing of 
predicted values regarding any monitored metric that the platform will require. The consortium is currently investigating 
several statistical, machine learning (ML)-based and hybrid time-series forecasting methods (i.e., based on a 
combination of ML and statistical methods) in order to deliver a minimum set of forecasters as part of the forecasting 
module. The details of this work will be provided in the upcoming WP2 deliverable D2.2 Implementation of a holistic 
application monitoring system with QoS prediction capabilities. 

6.2.6 Prediction Orchestrator 

The Prediction Orchestrator, created specifically for the MORPHEMIC platform, orchestrates the entire workflow of 
gathering and processing predicted metric values. Based on the metric's list, the Prediction Orchestrator specifies the 
details of the prediction process and informs the forecasters to start working. It later continuously gathers values 
forecasted by Forecasters, and performs ensembling using various machine learning and statistical algorithms. The 
created vector of predictions is then distributed to further (MORPHEMIC) components. The Prediction Orchestrator 
will have multiple further functionalities that will allow it to self-improve over time, i.e., it will be able to start or stop 
different forecasting methods based on their performance. The detailed description of the internal architecture and 
ensembling algorithms will be provided in the upcoming WP2 deliverable D2.2 Implementation of a holistic application 
monitoring system with QoS prediction capabilities. 

6.2.7 Severity-based SLO Violation Detector 

The Severity-based SLO Violation Detector is a subcomponent of the forecasting module that undertakes the important 
task of indicating a potential imminent SLO violation. The outcome of this tool will essentially trigger the proactive 
reconfiguration of the deployed application. This subcomponent will apply techniques that target at the identification of 
the severity of a potential SLO violation, using as input the predictions published by the MORPHEMIC Forecasters. 
Aspects such as perceived rate of metric(s) change, probability confidence and distance from SLO threshold will be 
used for driving the output of this component which will be detailed in the upcoming WP2 deliverable D2.2 
Implementation of a holistic application monitoring system with QoS prediction capabilities. 

6.2.8 EMS 

Event Management System (EMS) was introduced in the H2020 MELODIC project [46] as a distributed application 
monitoring system, which is used for monitoring the operation of the deployed cross-cloud applications. It is able to 
efficiently collect, process and deliver, monitoring information pertaining to a distributed, cross-cloud application, 
according to CAMEL model specifications, especially considering the defined SLOs. Therefore, EMS is used as a 
performance monitoring system that aggregates and propagates information that may trigger application 
reconfigurations. EMS has been significantly enhanced as part of the MORPHEMIC work [47]. It is now called 
Federated EMS and it has the capability to deploy and maintain a distributed network of self-sustained centralized 
subnetworks that serve as gateways to different monitoring and event processing agents, which are coupled in different 
levels across multi-clouds and edge resources. The self-sustainability refers first to the automatic and independent, from 
a central server, allocation of aggregation and event processing responsibilities to certain nodes of the monitoring 
network. Secondly, it offers resilience against failures, without the need of manual intervention or orchestration from a 
centralized network entity. Hence, EMS in the context of MORPHEMIC offers the means to enhance the resilience of 
the monitoring service across both dispersed cloud and edge resources. Last, we note that the events that EMS processes 
and propagates enable both the reactive and proactive triggering of the application reconfiguration process and especially 
its reasoning sub-process part. 

6.2.9 Solvers 

All, MELODIC and MORPHEMIC solvers, described in detail in D3.3 Optimized planning and adaptation approach 
can solve the Constraint Problem for the current execution context and also for the predicted execution context. In other 
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words, all stateless solvers can make the reasoning as it would be in the future such that they can be used in proactive 
adaptation. However, the current solvers are not able to consider the fact that the predicted execution context is given 
with some confidence interval. It should be noted that in proactive adaptation it will be beneficial to use a newly 
developed solver, described in D3.3 Optimized planning and adaptation approach, that considers both predictions, the 
confidence interval, and real-time measurements during the look up for the best application deployment configuration. 

7 Conclusions 

This deliverable discussed the ongoing work on an advanced proactive utility framework and the approach that enables 
the application resources optimization based on forecasted future needs.  

We presented the methodology for the application’s owner to model the functional form of the utility, including the way 
of describing this function form in the CAMEL language. Additionally, we provided high-level template function forms 
that can be incorporated as is in the application’s CAMEL model or combined via the use of the Utility Function Creator.  

Furthermore, we provided the description of various approaches for utility function modelling that leads to Cloud 
application resources optimization together with the discussion on fundamental concerns about forecasting in control 
loops. We designed and initially implemented the proactive adaptation feature of the MORPHEMIC platform which 
enables modelling the application utility in a proactive way, forecasting the execution context of the application, 
predicting the future performance metrics of the application, as well as conducting the reasoning based on the forecasted 
context and predicted performance for the proposed application deployment configuration. It should be noted that for 
the utility function modelling used in the MELODIC platform, the correlation between proposed configuration, 
execution context and the future performance of the application has to be specified manually by a DevOps; this is surely 
a difficult task to perform. In the utility metric approach, such a difficulty is a part of the optimization platform 
responsibility, so the part of the MORPHEMIC optimization loop. 

The next steps of this work involve the implementation and evaluation of the previously discussed and selected 
approaches for the proactive utility framework based on the data and applications of the MORPHEMIC use case 
partners. Furthermore, we will investigate additional methods, such as the utility copula and surrogate problem for 
inferring and modelling the relationships among metric values for proactive utility functions including time series 
expansion. This work will be proceeded in the coming months and reported in Deliverable D2.4 Proactive utility: 
Algorithms and evaluation. 
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