

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 871643

Test cases and testing

Modelling and Orchestrating heterogeneous
Resources and Polymorphic applications for
Holistic Execution and adaptation of Models
In the Cloud

Executive summary

MORPHEMIC is a complex multi-cloud solution, containing a
variety of modules, created by the cooperation of many people and
organizations. Therefore, it is crucial to put extra attention to testing,
preparing and executing test cases, managing the lifetime of test
cases, and reporting issues. This approach allows for uninterrupted
supervision of meeting functionality, quality, and reliability
requirements by immediate and constant detection and resolution of
any problems or missed objectives.
This deliverable is intended to be a set of guidelines on a lower
development and architecture level, completing the Validation
Framework. It contains definitions and a comprehensive description
of test cases, as well as a description of the process of creating a test
case, its life cycle, and guidelines for test cases’ types and priorities.
A specification of the testing environment is given, then all executed
test cases in both releases, Release 1.0 and Release 1.5, are listed,
grouped, and summarized.

H2020-ICT-2018-2020
Leadership in Enabling and Industrial
Technologies: Information and
Communication Technologies

Grant Agreement Number
871643

Duration
1 January 2020 –
31 December 2022

www.morphemic.cloud

Deliverable reference
D4.5

Date
1 June 2020

Responsible partner
7bulls.com

Editor(s)
Katarzyna Materka

Reviewers
Alexandros Raikos
Amir H. Taherkordi

Distribution
Confidential

Availability
www.morphemic.cloud

Author(s)
Anna Wyszomirska, Marcin Byra

D4.5 Test cases and testing

Page 2

Revisions
Date Version Partner Description

01.02.2021 0.1 (draft) 7bulls First Draft
10.02.2021 0.5 7bulls Two sections added
16.05.2021 1.0 7bulls Preliminary version
20.05.2021 1.1 University of Piraeus Official review by

Alexandros Raikos
21.05.2021 1.2 7bulls Revised version
25.05.2021 1.3 University of Piraeus Second review by

Alexandros Raikos
26.05.2021 1.4 7bulls Final version of the

contents
26.05.2021 1.5 7bulls Final style formatting
08.06.2021 1.6 University of Oslo Second official review by

Amirhosein Taherkodi
10.06.2021 1.7 7bulls Revised version
22.06.2021 1.8 IS-Wireless Review of the document

with comments inline.
29.06.2021 1.9 7bulls Final revision

D4.5 Test cases and testing

Page 3

Table of Content
1 Introduction .. 5

1.1 The scope .. 5

1.2 Audience ... 5

1.3 Structure of the document ... 5

2 Test Case Management .. 6
2.1 Test Case definition ... 6

2.2 Test case creation and update process ... 6

2.3 Test case life cycle ... 9

2.4 Test case elements .. 11

2.4.1 Required ... 11
2.4.2 Optional ... 11
2.4.3 Generated – elements added automatically by JIRA ... 11

2.5 Test case types .. 11

2.5.1 Functional Test Cases .. 12
2.5.2 Regression Test Cases ... 12
2.5.3 Non-Functional Test Cases .. 12

2.6 Test case priorities ... 12

2.7 Positive and negative test cases ... 13

3 Testing environments ... 13
4 Test cases ... 13

4.1 Summary of test cases ... 13

4.2 Naming patterns ... 14

4.3 Executed test cases ... 14

5 Conclusions .. 18

D4.5 Test cases and testing

Page 4

Index of tables
Table 1: Engineering testbed specification: Dell Inc. PowerEdge M630 .. 13
Table 2: Categories of test cases in Release 1.0 and Release 1.5 .. 13
Table 3 Naming patterns .. 14
Table 4: Abbreviations ... 14
Table 5: Test cases executed in MORPHEMIC release 1.0 .. 14
Table 6: Test cases executed in MORPHEMIC release 1.5 .. 17

Index of figures
Figure 1: JIRA login view ... 6
Figure 2: JIRA Create button ... 7
Figure 3: JIRA new issue creator ... 7
Figure 4: JIRA search box ... 8
Figure 5: Searching for issues in JIRA .. 8
Figure 6: Seach filters in JIRA .. 8
Figure 7: Search results in JIRA .. 9
Figure 8: Test Case lifecycle graph ... 10

D4.5 Test cases and testing

Page 5

1 Introduction

1.1 The scope
This document presents information related to the testing of MORPHEMIC project. Testing is an essential part of every
huge project created by the cooperation of many groups and people. To ensure quality and reliability, it is crucial to
follow all procedures of testing, prepare and execute test cases, report any issues and take care of the whole lifetime of
the test case or issue. An exhaustive description of a validation framework can be found in Deliverable D6.2 Validation
framework design. This document presents a realization of the assumptions introduced in Deliverable D6.2 Validation
framework design.
All new functionalities introduced during Release 1.0 and Release 1.5 need to be formally tested and a comprehensive
list of these tests is presented here. Release 1.0 was focused on the integration of the MELODIC1 platform with the
ProActive system. The first implementation of polymorphic adaptation using component variant activation has been
introduced. ProActive is already existing and constantly maintained Open Source solution with extensive cloud resource
management functionality. It fits perfectly as an Executionware of the MELODIC platform by preparing the ground for
polymorphic adaptation needed in the MORPHEMIC project since it supports edge computing in fog networks. All
required work was to provide a reliable interface between MELODIC Upperware and the ProActive system. Each test
case of Release 1.0 is related to this new integration. Release 1.0 was initially planned for 31st of March 2021, but as
some essential information flows between two projects proved to be more difficult to implement or needed to be
developed from scratch, the effective release date was 15th of June 2021.
Release 1.5 is a part of the MORPHEMIC project, providing a further extension of the existing system by introducing
the Proactive Adaptation as well as adding the Forecasting Module. The test cases related to this release are either a
regression (as the test cases from the Release 1.0 should apply to Release 1.5) or new test cases focused on the Proactive
Adaptation and Forecasting module. Release 1.5 is planned to be delivered on 31st of August 2021.
This document was divided into two parts. First, all information related to test case management is presented, containing
all necessary definitions, explanations, and guides. Then, testing environments and detailed lists of executed (that is
planned, created, and performed) test cases are given with analysis of the work done during both releases. A detailed
structure of the document is presented in Section 1.3 below.

1.2 Audience
This deliverable is intended for those involved in the software quality assurance process and their outcome:

• mandatory for test teams and architects:
o the test team needs to know what the test case creation process is, what the life cycle of the test case is, and

which elements the test case includes
o architects must check whether the test cases are consistent with the (system) specifications

• recommended for developers – they should know what the life cycle of the test case is and how the system will be
tested

• optional for the rest of the project members.

1.3 Structure of the document
This deliverable describes the two integration releases and their initial test environments. It contains the following
information, which is structured in the subsequent chapters:

• Chapter 2: Test Case Management - a full introduction into testing, including test case creation process, test case
lifecycle, covering all elements of a test case, as well as general classification of test cases.

• Chapter 3: Testing environments - a specification of the environments used for testing
• Chapter 4: Test cases - A detailed list of all executed test cases during Releases 1.0 and 1.5

1 https://melodic.cloud/

D4.5 Test cases and testing

Page 6

• Chapter 5: Conclusions - A brief summary of this deliverable

2 Test Case Management

The test process starts at the very beginning of a project life cycle with the Analysis and Design phases. The test team
prepares a test plan which contains test cases (as described in Deliverable 4.4 Test Strategy). The test plan also explicates
the dependencies between the test cases; in particular, it clarifies in what order the test cases should be executed. This
approach has important benefits:

• It allows the test team to understand the system to be developed
• It serves as a review of the system specifications and requirements
• It eases solving issues, as both the test teams and the development teams have the same base data (the test data;

input parameters for test cases, necessary to execute test cases and to reproduce bugs, if occurring during test case
execution)

In the following sections, we will present a Test Case definition (Section 2.1), detailed Test Case creation and update
process guide (Section 2.2), lifecycle, states and roles guide (Section 2.3), test case elements as they are presented in
the JIRA software (Section 2.4), types of test cases (Section 2.5), test case priorities (Section 2.6) and positive and
negative testing definitions (Section 2.7).

2.1 Test Case definition
A test case is a set of test data, pre-conditions, expected results and post-conditions for the tested implementations,
developed for a specific purpose or for the condition mapping to the test, such as the execution of a program path, or to
verify compliance with a specific requirement. A test case describes how to perform a specific test. Test cases will be
created by the test team, either through its members or through the test leader.

2.2 Test case creation and update process
Test cases will be prepared in the JIRA2 system for testing, which was chosen as a test management system for the
MORPHEMIC project. The discussion of the management system can be found in Deliverable D4.4 Test strategy.
MORPHEMIC uses the same test and bug tracking system as MELODIC because bugs observed can be related to both
platforms and should be solved across the two platforms.
The process below details how to create a test case in the JIRA system:
1. In the browser, open the page: https://jira.7bulls.eu
2. Enter your credentials in the fields Username and Password and press the Log In button:

Figure 1: JIRA login view

2 https://www.atlassian.com/software/jira

D4.5 Test cases and testing

Page 7

3. To create a new test case, press Create button:

Figure 2: JIRA Create button

4. Fill in all required fields and press the Create button:

Figure 3: JIRA new issue creator

5. After following these steps, a new test case will be created.
Chapter 2.5 covers all the (required and optional) information that can be provided about a certain test case.

D4.5 Test cases and testing

Page 8

A test case can be identified and edited via the following procedure:
1. Enter the issue number in the search box and press the Enter button:

Figure 4: JIRA search box

2. Search the issue via:
a. pressing the arrow next to the Issues button
b. choosing the option Search for Issues

Figure 5: Searching for issues in JIRA

c. entering the appropriate search criteria and waiting for automatic results update (a query can be written
manually by clicking on Advanced and pressing Enter):

Figure 6: Search filters in JIRA

D4.5 Test cases and testing

Page 9

After following steps 2.a-2.c, you will get a list of appropriate issues:

Figure 7: Search results in JIRA

After following steps 1 or 2, you will be able to see and edit the details of a chosen test case. Additional information
about the usage of JIRA for testing can be found in the JIRA Users Guide3.

2.3 Test case life cycle
This chapter contains information about the test case lifecycle in the MORPHEMIC project. The following states apply
for a certain test case:
• NEW
• TO DO
• IN PROGRESS
• TO TEST
• DONE
• REOPEN

3 https://confluence.atlassian.com/jira064/jira-user-s-guide-720416011.html

D4.5 Test cases and testing

Page 10

• CLOSED
The Figure 8 below depicts the workflow for test case handling in MORPHEMIC.

Figure 8: Test Case lifecycle graph

After a test case is created by one of the members of a Test Team, it has the NEW state and it is assigned to the Test
Leader. Then the Test Leader accepts the test and assigns it to one of the Test Team members, changing the state to TO
DO. When a Test Team member starts working on the given test case, the state is changed to IN PROGRESS. If the test
case is executed without problems, the Test Team member changes the state to TO TEST after completing all steps
specified in the test case description.
After the test case is executed, the Test Team member changes its state to TO TEST. It can be assigned to the same or
another Test Team member. From there, the state may be changed to:

• DONE, if the result is as expected and the test case is considered as completed. It is assigned to the Test Leader.
• REOPEN, if there are any problems, required modifications or another reason to rerun the test. It can also be

assigned to the Test Leader, who decides who should be assigned to this test case after reopening.
When the Test Leader accepts the executed test case, it changes its state to CLOSED, what basically finishes its lifecycle.
However, if there are any reasons for reopening the test case (for example, modifying related functionalities require test
case to be verified again), its state can be always changed to REOPEN.
In each state, a test case can be marked as blocked. For example, if there is some missing software functionality that is
necessary to perform a test case, a Test Team member has to create another issue in JIRA and mark the test case as
blocked but the new issue. It is a popular scenario, most often happening while a test case is in TO DO, IN PROGRESS
or REOPEN states. A Test Team member assigned to the issue has to wait until the problem is resolved, then the test
case can be executed again.

D4.5 Test cases and testing

Page 11

2.4 Test case elements
A typical test case consists of some basic elements that are always present, regardless of project or organization.
However, for clarity, let us skip the theoretical introduction and focus on specific information filled in the respective
JIRA form to construct a new test case. Any test case contains elements, which can be divided into three groups:
Required, Optional and Automatically generated. Each test case is also in a specific state during all its life cycle, but the
state is not considered as test case element, and it is not required to specify it while creation as all new test cases are
automatically set to state NEW by JIRA.
2.4.1 Required
These elements require user input on each test case. They are:

• Description – a brief description or title of a test case, usually not longer than one sentence,
• Creator – JIRA software usually suggests some user, but the test creator must accept (or change) this person,
• Priority – one must specify how important or how or urgent is the test case. Default is Medium and the priority

system is explained below in Section 2.6
• Assign to – one must specify who should handle the use case after it is created.

Note that the three elements below are not formally required by JIRA form, but it is essential to fill them for every test
team member to fully understand the test case. Thus, they are listed in this Required group.

• Input Conditions - a comprehensive description of prerequisites necessary to go through the test case steps,
• Steps To Complete - all steps that a Test Team member must perform to complete the assigned test case,
• Expected Results - description of the results, expected conditions or state of a program a Test Team member should

get after the successful execution of all test case steps.

2.4.2 Optional

• Labels - short names related to a subject of a given test case, or related to a set of test cases, for example Release_1,
GUI,

• Related issues – links to other JIRA tasks (e.g., test cases) together with a relation type (e.g., blocks, is blocked by,
duplicates, etc.),

• Attachments - files uploaded that are necessary or useful for a given test case (for example, .jpg or text files
containing data),

• Planned finish date - approximate time of finishing the assigned test case, if it is possible to estimate,
• Fixed in – a release version used to track different software developments and updates,
• Description - usually Input Conditions, Steps to Complete and Expected Results are self-explanatory, but any

supplementary information should be placed here.

2.4.3 Generated – elements added automatically by JIRA

• ID - an identifier which is unique amongst all JIRA test cases, tasks, issues, etc.,
• Creation date - the specific time when a test case was created,
• Update date – the time of the last modification of the given test case (status change, assigning to another Team

Member, changing description, etc.),
• Activity - a log containing every action performed by any user related to given use case.

2.5 Test case types
There exist several types of software tests. A list of the test case categories utilized in the MORPHEMIC project with
basic definitions is presented below. A more exhaustive explanation of testing types along with their objectives and
tools can be found in Deliverable D4.4 Test strategy, Chapter 4.

D4.5 Test cases and testing

Page 12

2.5.1 Functional Test Cases
Each Functional Test Case is designed to validate the features and operational behaviour of software to ensure that they
correspond to the specification. The Functional Test Case usually corresponds to some requirement, be it functionality,
a user interface element or flow, integration with another module, etc. They are an essential part of a testing architecture,
allowing the development team to correct any issues or implement missing features blocking the Functional Test Case
from execution.
2.5.2 Regression Test Cases
Regression Test Cases are heavily utilized in the MORPHEMIC project. They are responsible for retesting a software
system after it was modified in order to ensure that all bugs were resolved and fixed, that no previously working function
fails as a result of the modifications, and that newly added features don’t create problems to the existing parts of the
software. In other words, they are quality control test cases enabling the extension and development of the software
system without corrupting the existing parts. In Release 1.5, a lot of the Release 1.0 test cases are reused as Regression
Test Cases.
2.5.3 Non-Functional Test Cases
This group of test cases includes various types of test cases, such as performance tests, stress tests, failover tests, and
security tests. The amount of each type of test strongly depends on the project’s needs. They check if the system achieves
required response times and verifies its behaviour under varying workloads, check the system behaviour when there are
insufficient resources or network problems. They can also ensure that the system works properly after restart or failure
and other extraordinary situations; they also verify the security of the system by trying to find potential threats and
vulnerabilities.

2.6 Test case priorities
Prioritization of test cases is a complex and not strictly defined problem. One general purpose of priorities is to minimize
cost, time, and effort during the testing phase of a specific software. Tests can be divided into categories from high to
lower priority based on the end-user perspective (based on ISTQB methodology):

• Blockers - these test cases validate essential functionalities of the software. When they fail, the software is
considered as useless,

• Critical - the focus is on verifying where the most important cases work and where they do not, causing the whole
application to fail in some occasions. If they fail, the software is considered as not having its necessary functions
working.

• Major – these test cases test basic functionality of the application. From the user perspective, the process of ensuring
they can be executed properly can be sometimes postponed, but are noticeably degrading the experience,

• Minor – this category includes all small bugs.

However, the above grouping can be considered as one method of categorization but also other methods can be
incorporated with each project individually. The groups above describe the significance of a bug for the whole project.
Sometimes it is convenient to use simple priorities describing how urgent it is to solve a particular bug at a given time.
That is why we utilize the JIRA priorities:

• Lowest
• Low
• Medium
• High
• Highest

This is a very simple yet easy-to-use way of assigning a priority to the test case. Additionally, JIRA forces the test case
creator to choose the appropriate priority from this scale, what is a desirable behaviour. At the same time, the categories
from the first grouping can be added as labels if necessary.

D4.5 Test cases and testing

Page 13

2.7 Positive and negative test cases
Almost all test cases can be assigned as Positive or Negative. Below are the definitions of each type.
Positive test case (or Positive Testing) is performed by providing valid data (or performing a valid action, following a
valid instruction, etc.) to check if the application behaves as expected. It checks if the output of given test is exactly as
specified in a test case description.
Negative test case (or Negative Testing) is performed by providing specified invalid data (or performing an invalid
action, following an invalid instruction etc.). It checks if the application handles the invalid scenario as expected (as
specified in test case output) and remains stable despite the invalid input.

3 Testing environments

A testing environment is a setup of software and hardware for the testing teams to execute test cases. In other words,
the environment supports test execution with all suitable hardware, software, and network configured. Such
environments may vary significantly in size: the development environment is typically an individual developer’s
workstation, while the production environment may be a network of many geographically distributed machines in data
centres, or virtual machines in Cloud computing. The code, data, and configuration may be deployed in parallel, and
need not to be connected to the corresponding tier; For example, pre-production code may connect to a production
database.
For both releases, we used the following testing environment, which was determined after real case analysis of Use
Partners applications so that it does not behave as a ‘bottleneck’. Even if the testing environment itself does not include
the use case application, it needs to conform to the needs of the testing cases, especially the performance ones.

Table 1: Engineering testbed specification: Dell Inc. PowerEdge M630

Resource Details
CPU 2x Intel Xeon E5-2670 v3 30 MB cache @2,30 GHz, 12

cores with 24 threads
RAM 384 GB ECC
Storage 2x 300GB Disks in RAID 1
Network 8x network cards at 10 Gbps

4 Test cases

4.1 Summary of test cases
In Table 2, we summarize all executed test cases, divided into groups. The number of test cases of both releases are
presented in separate columns. We give a short explanation of each group below. The test cases executed during Release
1.0 test the functionalities developed during this phase, while the test cases of Release 1.5 also include some Release
1.0 tests as Regression Test Cases.

Table 2: Categories of test cases in Release 1.0 and Release 1.5

Test cases groups Test cases created during release 1.0
(summary)

Test cases created during release 1.5
(summary)

Initial deployment 32 10
Metric management 3 5
Application creation 19 14
Reconfiguration 1 -
Forecasting module - 2

D4.5 Test cases and testing

Page 14

• Initial deployment – This group contains all scenarios related to the initial deployment of an application in the

Melodic platform.
• Metric management – Metric management means the collection, processing (aggregation), storage and delivery of

raw and composite metrics, as well as CAMEL events based on these metrics
• Application creation – All test cases related to designing, creating and exporting a CAMEL model are grouped

here
• Reconfiguration – Reconfiguration of the application based on the new solution found by Reasoning part of the

system.
• Forecasting module – Tests cases related to the forecasting module

4.2 Naming patterns
In order to formalize the name of test cases, following naming patterns are used. Please consider that this naming
convention is optional and final name of the test case is up to decision of the test case creator.

Table 3 Naming patterns

Type Pattern
use cases UC-partner name-ordinal number [T/N] Name of the test case
use case test case example UC-ICON-1 Deployment of the application on AWS
features Ffeature number.subfeature number-ordinal number [T/N] Name of the test case
feature test case example F6.1-10- Create metric type Model inside CAMEL model
other test cases Ttest number.feature number [T/N] Name of the test case
other test case example T1.5 [T] Create VM on AWS resources

Where optional [T] denotes a positive test and optional [N] denotes a negative test.

Table 4: Abbreviations

Abbreviation Full name
F Feature
UC Use Case
ISW ISWireless
CHUV Centre Hospitalier Universitaire Vadois
INACC InAccell
T Test
P positive (test case result)
N negative (test case result)

4.3 Executed test cases
This subsection presents a list of executed Test Cases for MORPHEMIC release 1.0. In particular, Table 5 shows the
identifier of the executed test cases for Release 1.0, including a summary of each case, with optional [P] or [N] denoting
positive or negative test case, in terms of its task corresponding identifier and name is explained in Section 4.1.
Note that some tests cases were executed for both releases.

Table 5: Test cases executed in MORPHEMIC release 1.0

KEY Name Priority Group
MORPHTEST-1 T1.1[P] Installation and deployment of FCR application on AWS Medium Initial

deployment
MORPHTEST-3 T1.2[P] Installation and deployment of two-component

application on AWS
Medium Initial

deployment

D4.5 Test cases and testing

Page 15

MORPHTEST-4 T1.3[P] Installation and deployment of one-component
application on OpenStack

Medium Initial
deployment

MORPHTEST-5 T1.4[P] Installation and deployment of two-component
application on OpenStack

Medium Initial
deployment

MORPHTEST-6 T1.5[P] Create VM on AWS resources Medium Initial
deployment

MORPHTEST-7 T1.6 [P] Create VM on OpenStack resources Medium Initial
deployment

MORPHTEST-8 T1.7 [P] Successfully retrieve Node Candidates for AWS Medium Initial
deployment

MORPHTEST-9 T1.8 [N] Assure that wrong cloud configuration forbids retrieval
of Node Candidates

Medium Initial
deployment

MORPHTEST-10 T1.9 [P] Successfully retrieve Node Candidates for OpenStack Medium Initial
deployment

MORPHTEST-11 F1.2-MARKOS' Web Crawler: Apache configured as source
code repository

Low Initial
deployment

MORPHTEST-12 F1.3-MARKOS' Web Crawler Test: GitHub Plugin configured as
source code repository

Low Initial
deployment

MORPHTEST-13 F1.1-MARKOS' Web Crawler Test: JQuery Plugin configured as
source code repository

Low Initial
deployment

MORPHTEST-14 UC-ISW-T-01: CPU/RAM utilization metric acquisition testing Medium Metric
management

MORPHTEST-15 UC-ISW-T-02: Constraint testing Medium Initial
deployment

MORPHTEST-16 UC-ISW-T-03: SLO violation testing Medium Metric
management

MORPHTEST-17 UC-ISW-T-04: BYON testing Medium Initial
deployment

MORPHTEST-18 UC-ISW-T-05: vRAN application deployment Medium Initial
deployment

MORPHTEST-19 UC-ISW-T-06: vRAN configuration and interaction testing Medium Initial
deployment

MORPHTEST-20 UC-ISW-T-07: application metric acquisition Medium Metric
management

MORPHTEST-21 UC-INACC-1 FPGA integration on Pro active Medium Initial
deployment

MORPHTEST-22

F6.1-1- Camel Designer Project Creation in Modelio Medium Application
creation

MORPHTEST-23

F6.1-2- Camel Designer Create a new Camel Model Medium Application
creation

MORPHTEST-24

F6.1-3- Camel Designer Import CAMEL Model from CAMEL
file

Medium Application
creation

MORPHTEST-25

F6.1-4- Camel Designer Export CAMEL Model into XMI file High Application
creation

MORPHTEST-26

F6.1-5- Camel Designer Export CAMEL Model into CAMEL
file

Low Application
creation

MORPHTEST-27

F6.1-6- Create Deployment Model inside a CAMEL Model Medium Application
creation

D4.5 Test cases and testing

Page 16

MORPHTEST-28

F6.1-7- Create Requirement Model inside a CAMEL Model Medium Application
creation

MORPHTEST-29

F6.1-8- Create data type Model inside a CAMEL Model Medium Application
creation

MORPHTEST-30

F6.1-9- Create organisation Model inside a CAMEL Model Medium Application
creation

MORPHTEST-31

F6.1-10- Create metric type Model inside a CAMEL Model Medium Application
creation

MORPHTEST-32

F6.1-10- Create constraint Model inside a CAMEL Model Medium Application
creation

MORPHTEST-33 F6.1-11- Create unit model Model inside a CAMEL Model Medium Application
creation

MORPHTEST-34

F6.1-12- Create a software component inside a Deployment
Model

Medium Application
creation

MORPHTEST-35 F6.1-13- Create a host port inside a Software Component Medium Application
creation

MORPHTEST-36 F6.1-14- Create a communication port inside a Software
Component

Medium Application
creation

MORPHTEST-37

F6.1-15- Create a script configuration inside a Software
Component

Medium Application
creation

MORPHTEST-38

F6.1-16- Create a requirement inside a Requirement model Medium Application
creation

MORPHTEST-39

F6.1-17- Create an optimization requirement inside a
Requirement model

Medium Application
creation

MORPHTEST-40 F6.1-18- Create a metric variable inside a metric type model Medium Application
creation

MORPHTEST-41 UC-ISW-T-08: MORPHEMIC deployment from the Gitlab
repository

Medium Initial
deployment

MORPHTEST-42

UC-CHUV-1 Deployment of the preproc application on AWS High Initial
deployment

MORPHTEST-43 UC-INACC-2 FPGA acceleration of edge application Medium Initial
deployment

MORPHTEST-44 UC-INACC-3 FPGA acceleration of neurocomputing application Medium Initial
deployment

MORPHTEST-45 UC-ICON-1 Deployment of HelloWorld Camel - Stomp.py to
create worker

Medium Reconfiguration

MORPHTEST-46 UC-ICON-2 Test ActiveMQ server client deployment Medium Initial
deployment

MORPHTEST-47

UC-ICON-3 run different base images for scheduler and worker Medium Initial
deployment

MORPHTEST-48

UC-ICON-4 check requirements storage option Medium Initial
deployment

MORPHTEST-49

T2.1 [P] Testing the operation of Melodic testbed. Medium Initial
deployment

MORPHTEST-51

UC Brain - Test Neuroimaging application deployment in test
bed

Medium Initial
deployment

D4.5 Test cases and testing

Page 17

MORPHTEST-52

UC-CHUV-
1_Deployment_preprocessing_application_on_TestBedInfra'

Medium Initial
deployment

MORPHTEST-53

UC Brain - Test Neuroimaging application Python
implementation

Medium Initial
deployment

MORPHTEST-54

UC Brain - Test Neuroimaging application_docker
implementation

Medium Initial
deployment

MORPHTEST-55

UC Brain - Test Neuroimaging application deployment and
running with proactive

Medium Initial
deployment

MORPHTEST-56

UC Brain - Test Neuroimaging application deployment and
running without proactive

Medium Initial
deployment

MORPHTEST-58 T3.1 [P] Install MORPHEMIC with Proactive

Medium Initial
deployment

Table 6: Test cases executed in MORPHEMIC release 1.5

KEY Name Priority Group
MORPHTEST-
100

1.5 - T1.4[T] Installation and deployment of two component
application on Openstack

Medium Initial
deployment

MORPHTEST-99 1.5 - T1.5[T] Create VM on AWS resources

Medium Initial
deployment

MORPHTEST-98

1.5 - T1.6 [T] Create VM on OpenStack resources

Medium Initial
deployment

MORPHTEST-97

1.5 - T1.7 [T] Successfully retrieve Node Candidates for AWS

Medium Initial
deployment

MORPHTEST-96

1.5 - T1.8 [F] Assure that wrong cloud configuration forbids
retrieval of Node Candidates

Medium Initial
deployment

MORPHTEST-95

1.5 - T1.9 [T] Successfully retrieve Node Candidates for
OpenStack

Medium Initial
deployment

MORPHTEST-94

1.5 - F6.1-2- Camel Designer Create a new Camel Model

Medium Application
creation

MORPHTEST-92

1.5 - F6.1-3- Camel Designer Import CAMEL Model from
CAMEL file

Medium Application
creation

MORPHTEST-90

1.5 - F6.1-6- Create Deployment Model inside a CAMEL Model

Medium Application
creation

MORPHTEST-89 1.5 - F6.1-7- Create Requirement Model inside a CAMEL Model

Medium Application
creation

MORPHTEST-87 1.5 - F6.1-8- Create data type Model inside a CAMEL Model

Medium

Application
creation

MORPHTEST-86 1.5 - F6.1-9- Create organisation Model inside a CAMEL Model

Medium Application
creation

MORPHTEST-85 1.5 - F6.1-10- Create metric type Model inside a CAMEL Model

Medium Application
creation

MORPHTEST-84

1.5 - F6.1-10- Create constraint Model inside a CAMEL Model

Medium Application
creation

D4.5 Test cases and testing

Page 18

MORPHTEST-83 1.5 - F6.1-11- Create unit model inside a CAMEL Model

Medium Application
creation

MORPHTEST-82 1.5 - F6.1-12- Create a software component inside a Deployment
Model

Medium Application
creation

MORPHTEST-81 1.5 - F6.1-13- Create a host port inside a Software Component

Medium Application
creation

MORPHTEST-80 1.5 - F6.1-14- Create a communication port inside a Software
Component

Medium Application
creation

MORPHTEST-79 1.5 - F6.1-15- Create a script configuration inside a Software
Component

Medium Application
creation

MORPHTEST-77 1.5 - F6.1-16- Create a requirement inside a Requirement model

Medium Application
creation

MORPHTEST-76 1.5. - Proactive notifies EMS for a new VM and
COMMUNICATION with EMS ActiveMQ

Medium Metric
management

MORPHTEST-75 1.5 - MetaSolver notifies EMS for a CP model update

Medium Metric
management

MORPHTEST-74 1.5 - TEST COMMUNICATION with EMS REST endpoints

Medium Metric
management

MORPHTEST-73 1.5 - Performance model

Medium Metric
management

MORPHTEST-72 1.5 - Persistent storage

Medium Metric
management

MORPHTEST-71 1.5 - WEB-CRAWLER

Medium Initial
deployment

MORPHTEST-68 1.5 - T3.1 [T] Install Morphemic with Proactive

Medium Initial
deployment

MORPHTEST-67 1.5 - F2.1-1 [T] Forecasting Module - TFT test

Medium Forecasting
module

MORPHTEST-66 1.5 - F2.1-2 [T] Forecasting Module - NBEATS test

Medium Forecasting
module

MORPHTEST-65 1.5 Morphemic - Deployment of a FCR application on one Cloud
Provider on machine with artifacts from previous deploy

Medium Initial
deployment

MORPHTEST-64 1.5 Morphemic - Deployment of a two-component application on
one Cloud Provider

Medium Initial
deployment

5 Conclusions

This deliverable presented performed test cases in 1.0 and 1.5 integration releases and all information related to testing
and test management. All team members utilize the guides presented in this document, as well as categories, names, and
patterns. The test cases were created and executed using the test case procedures described in this deliverable. In
particular, Table 4 contains the list of 55 Test Cases executed during Release 1.0, while Table 5 contains the list of 30
Test Cases executed in Release 1.5. All presented test cases were successfully executed and helped to verify the

D4.5 Test cases and testing

Page 19

correctness of various functionalities, ensure the system fulfils the project requirements, and detect a number of bugs
and errors, as expected.

