

Security design and implementation

Modelling and Orchestrating heterogeneous
Resources and Polymorphic applications for
Holistic Execution and adaptation of Models
In the Cloud

Executive summary

Security is a critical aspect in complex and heterogeneous platforms
like MORPHEMIC: in such a context, the security by itself assumes
complex roles definitions. The Platform Security includes all
fundamental aspects, like Authentication, Authorization and Access
Logging, aimed to preserve data and services in the “internal”
operations. The authentication assures both that users are correctly
identified and that the platform, acting on behalf of these users, is
identified by the Deployment Environments. The authorization is
designed according to the Attribute Based Access Control (ABAC)
model. It is applied in two cases: Role-Based User-Authorization,
for the basic user operations; Pre-Authorization to decide who,
where and when is allowed to access a certain Deployment
Environment. Finally, a mechanism of access logging keeps track of
all the authentication and authorization attempts made in and by the
platform.

In order to assure the highest security level to deployed applications,
the selection of hosting nodes and environments must take into
account their security features: this capability is defined as
Deployment Security. The security features are formalized as
security parameters and concur to the definition of the overall
Utility.

MORPHEMIC includes components from previous European
projects. The the document reports the results of an analysis on the
reused components

The design of the MORPHEMIC’s Security system is complete and
consolidated: however, the implementation and the integration of all
the related aspects will embrace the whole project period. Each
component must be secured and integrated into the Platform
Security system. The Deployment Security will proceed along with
the other aspects related to the handling of a polymorphic
application’s Utility. The security mechanisms and guidelines
provided should drive the whole development activity. However, it
is possible that new functionalities will be needed, and new security
requirements raised. This could happen during or even after the
Project and could make it necessary to improve the security design
and implementation.

H2020-ICT-2018-2020

Leadership in Enabling and Industrial
Technologies: Information and
Communication Technologies
Grant Agreement Number

871643
Duration

1 January 2020 – 31 December 2022

Deliverable reference

D4.2
Date

30 June 2021
Responsible partner

Engineering
Editor(s)

Ciro Formisano
Reviewers

Marta Różańska, Kyriakos Kritikos
Distribution

Public
Availability

www.morphemic.cloud

Author(s)

Ciro Formisano (ENG), Daniele Pavia (ENG), Pawel Skrzypek (7BULLS), Ali Fahs (ACT),
Ioannis Patiniotakis (ICCS)

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 871643

D4.2 Security design and implementation

Page 2

Revisions

Date Version Partner Description

04/06/2021 0.1 (draft) ENG First draft

15/06/2021 0.2 UiO First Review

16/06/2021 0.3 ENG Revised version after the first
review

03/08/2021 1.0 ENG
Final version after the review
by FORTH and the members of
the PMB

D4.2 Security design and implementation

Page 3

Table of Contents
1 Introduction .. 8

1.1 Scope .. 8

1.2 Target audience .. 8

1.3 Related Deliverables .. 8

1.4 Structure of the document .. 9

2 Security concepts ... 10

2.1 Security related requirements .. 11

2.2 Platform Security ... 12

2.3 Deployment Security ... 13

3 Platform security’s functionalities and architecture .. 15

3.1 Authentication system .. 19

3.1.1 User-Authentication ... 19

3.1.2 Deployment Environment Authentication ... 20

3.1.3 Implementation details: Executionware – ProActive Scheduler ... 22

3.2 Attribute based authorization ... 23

3.2.1 User-Authorization and Deployment Environment-Pre-Authorization: concept and design 24

3.2.2 Implementation details: XACML, AOP and interceptors ... 28

3.3 Access Logging system ... 30

3.3.1 Architecture of the Access Logging system .. 33

3.3.2 Implementation details: Access Tracker and agents .. 34

4 Deployment Security ... 36

4.1 Introduction and motivations ... 36

4.2 Deployment Environment security profile, security requirements and security parameters 41

4.3 Executionware: definition of the candidate nodes ... 44

4.4 Application security requirements and Deployment Environment security profile in MORPHEMIC’s
profiling, reasoning and adaptation tasks .. 44

5 MORPHEMIC’s reused components: security analysis .. 47

5.1 Components of the MELODIC Platform: issues and potential solutions .. 47

5.2 Web Crawler .. 50

6 Conclusions .. 52

D4.2 Security design and implementation

Page 4

Index of Figures

Figure 1 MELODIC's inbound and outbound security .. 10

Figure 2 Architecture of the MORPHEMIC Platform ... 15

Figure 3 Platform security functionalities ... 16

Figure 4 Key components of MORPHEMIC .. 17

Figure 5 Complete Platform Security System in MORPHEMIC .. 18

Figure 6 Authentication system ... 19

Figure 7 Authentication operations flow ... 20

Figure 8 MELODIC's Cloud Providers’ credential flow ... 21

Figure 9 Deployment Environment credentials flow ... 21

Figure 10 MELODIC's RBAC Authorization system ... 23

Figure 11 Roles in MORPHEMIC ... 24

Figure 12 Pre-Authorization and environment's authentication processes .. 25

Figure 13 Use case diagram of Pre-Authorization ... 26

Figure 14 Components which need authorization ... 27

Figure 15 XACML generic architecture .. 29

Figure 16 Authorization system in MORPHEMIC ... 30

Figure 17 User-Authentication Log Flow .. 31

Figure 18 Deployment Environment Authentication Log Flow .. 32

Figure 19 Authorization Log Flow .. 32

Figure 20 Architecture of the Access Logging system .. 33

Figure 21 Deployment security flow ... 38

Figure 22 Deployment security in the MORPHEMIC architecture .. 39

Figure 23 Deployment Security’s detailed flow .. 40

Figure 24 Security responsibility levels ... 41

Figure 25 Infrastructure registration flow .. 42

Figure 26 Adding a Reverse Proxy .. 50

D4.2 Security design and implementation

Page 5

Index of Tables

Table 1 Security related requirements in Deliverable 6.1 ... 11

Table 2 Examples of policies ... 27

Table 3 Fields used in the MORPHEMIC's security logging messages .. 35

Table 4 Requirements indirectly related to deployment security .. 36

Table 5 Deployment Environment security parameters .. 43

Table 6 Security issues and suggested actions found by OpenVAS on the MORPHEMIC core platform 49

D4.2 Security design and implementation

Page 6

Acronyms

AAA Authentication, Authorization and Accounting

ABAC Attribute Based Access Control

AOP Aspect Oriented Programming

BPM Business Process Management

BYON Bring Your Own Node

CAMEL Cloud Application Modelling and Execution Language

CLI Command Line Interface

CP Constraint Programming

CRUD Create Read Update Delete

DB Database

DE Deployment Environment

ESB Enterprise Service Bus

GDPR General Data Protection Rule

GUI Graphical User Interface

IDS Intrusion Detection System

IaaS Infrastructure as a Service

IT Information Technology

JSON JavaScript Object Notation

JWT JSon Web Token

LDAP Lightweight Directory Access Protocol

MDS Meta Data Schema

OASIS Organization for the Advancement of Structured
Information Standards

OS Operating System

D4.2 Security design and implementation

Page 7

Acronyms

PAMR ProActive Message Routing

PDL Policy Decision Logger

PNPS ProActive Network Protocol over SSL

RBAC Role Based Access Control

SAL Executionware. Specifically, the abstraction layer (AL)
that schedules (S) the application reconfiguration actions

SSH Secure SHell

TOSCA Topology and Orchestration Specification for Cloud
Applications

UI User Interface

URL Uniform Resource Locator

XACML eXtensible Access Control Markup Language

XML eXtensible Markup Language

VM Virtual Machine

D4.2 Security design and implementation

Page 8

1 Introduction

1.1 Scope
This deliverable is focused on the design of the security system of the platform and its implementation. Security must
be designed based on the provided platform functionalities and on the related risks, especially in terms of data. It is
similar to a tailored suit, that must be adapted to the physical structure of who will wear it. The MORPHEMIC platform
inherits some functionalities from MELODIC: for these functionalities data is used in similar ways. However, the
security risks introduced by the new functionalities and the extensions of the legacy ones are prominent. The
polymorphism extends the range of potential Deployment Environments, including also insecure nodes, while the
heterogeneous supported application forms generate new risks due to the increased complexity of the deployment model.
The profiling functionality, used to better define the deployment requirements of a certain application, needs an extended
set of data, often coming from external sources. According to this, the basic security functionalities, authentication and
authorization, inherited from MELODIC, must be reviewed and, if needed, extended. In addition, the introduction of an
efficient mechanism of access logging is considered very useful to record the security events that may happen in this
complex environment. This functionality becomes very important in case of attack: in fact a detailed analysis of the
security-related events simplifies very much the work of who is in charge to find the cause and implement the
countermeasures.

The heterogeneous Deployment Environments extend the range of offers available to the use cases. The Utility of the
various offers is evaluated according to the parameters shown in the Deliverables D2.3 ProActive Utility: Framework
and Approach and D3.3 Optimized Planning and adaptation approach. However, the analysis of the industrial
requirements available in Deliverable D6.1 Industrial requirements analysis highlights the perceived importance of
security also in terms of Utility. This suggested the introduction of the new concept of Deployment Security, which
represents the capability to select the most suitable Deployment Environment considering its security level along with
the other parameters used to evaluate the Utility. The Deployment Security introduces several challenging aspects on
all the functionalities of MORPHEMIC: for instance, the evaluation of the infrastructure or node security features or
the selection of the most valid one for a certain component by matching the specific security features against the security
requirements.

This Deliverable provides detailed description of all the aforementioned security-related functionalities and aspects.

1.2 Target audience
According to the DoW, this Deliverable is a public document. All the sections are aimed at a technical audience.
Specifically, Chapters 2, 3 and 0 include architectural descriptions appropriate for technical architects specialized in
security and infrastructures, but even developers can benefit from them. Chapter 5 is focused on the components
inherited from other projects, specifically MELODIC and MARKOS. Their security features are analysed and some
suggestions to adapt them to MORPHEMIC are provided: developers and component owners could benefit from this
chapter. The document, especially its first part, contains a comparison between MELODIC and MORPHEMIC, aimed
to specify what has been fully or partially inherited from MELODIC and what has been newly introduced into
MORPHEMIC: these aspects are very useful for the members of the consortium, especially developers and component
owners, that were not part of the MELODIC project.

All the aforementioned aspects are useful for an internal audience, i.e., members of the project consortium. The
deliverable aims to be a guideline to develop secure components to be integrated in a secure platform. However, some
technical and architectural concepts, such as the architecture and technology of the authorization system (Section 3.2.1),
can be interesting also for external architects and security experts. Finally, the concept of Deployment Security (Chapter
4) can be a research topic that researchers can extend.

1.3 Related Deliverables
The work documented in this Deliverable is related to other deliverables of MORPHEMIC. The deliverables that will
be mentioned are:

• Deliverable D4.1 Architecture of pre-processor and proactive reconfiguration: concerning the architecture,
processing flow and description of the mentioned components

D4.2 Security design and implementation

Page 9

• Deliverable D5.3 Deployment artefact manager: concerning the details on the Scheduling Abstraction Layer
and ProActive Scheduler and Resource Manager, specifically on the association of a new Deployment
Environment (addCloud method) and the related profile to be extended in terms of security

• Deliverable D6.1 Industrial requirements analysis: concerning the requirements to which the work on security
is referred.

1.4 Structure of the document
The Deliverable presents the following structure:

• Chapter 2, Security concepts, describes the theoretical aspects that are the basis of the security architecture of
MORPHEMIC. It also includes the security-related requirements of Deliverable D6.1 Industrial requirements
analysis as well as defines the concepts of Platform Security and Deployment Security

• Chapter 3, Platform security’s functionalities and architecture, describes the functionalities related to the
Platform Security, namely Authentication, Authorization and Access Logging

• Chapter 4, Deployment Security, is focused on the concept of Deployment Security, how it is applied in
MORPHEMIC and which architectural components implement it

• Chapter 5, MORPHEMIC’s reused components: security analysis, provides detailed information on the security
characteristics of the components of the current release of MORPHEMIC and the next steps planned to improve
it.

• Chapter 6 summarises the document and supplies a set of final considerations.

D4.2 Security design and implementation

Page 10

2 Security concepts

There is not any universally accepted definition of security. There is also a debate around the difference between
information security and cybersecurity, which are often considered synonymous.

According to the definition of the SANS institute1, “Information Security refers to the processes and methodologies
which are designed and implemented to protect print, electronic, or any other form of confidential, private and sensitive
information or data from unauthorized access, use, misuse, disclosure, destruction, modification, or disruption”2.
Cybersecurity is a broader practice, focused on defending IT assets from attacks: it is a sort of parent of information
security, while network security and application security are brother disciplines3.

Cybersecurity is very wide and extends over different levels much beyond secure code and information security: it
includes also the physical accesses to server rooms and training of the operating personnel. Application security is
focused on the code of the application and on the measures to make it secure.

Topics such as server room security or personnel training are out of scope of this document: in the MORPHEMIC
project the priority is to secure the information/data stored in the platform and to assure that the selected Nodes and
Deployment Environments provide security features adequate to the security requirements of the associated applications.
For this reason, according to the aforementioned definitions, the most appropriate one in the context of MORPHEMIC
is information security, but some aspects of application security will be discussed, especially concerning the inherited
components.

The starting points are the MELODIC’s Security system, described in the Deliverable 5.3 of MELODIC [1], and the
industrial requirements, listed in Deliverable D6.1 Industrial requirements analysis.

MELODIC is a multi-cloud deployment platform, which supports the optimized deployment of applications on nodes
selected from different cloud providers. The platform supports two information flows: from the user to the platform and
from the platform to the clouds. For both flows, an authentication and an authorization mechanism are provided.

Figure 1 MELODIC's inbound and outbound security

1 https://www.sans.org/
2 https://www.sans.org/information-security/
3 https://www.csoonline.com/article/3513899/what-is-information-security-definition-principles-and-jobs.html

D4.2 Security design and implementation

Page 11

The user produces data (e.g., registration data, infrastructure ownership, etc.) and requests for services (e.g., application
deployment): this requires that his/her identity is assured (authentication) along with the privileges to do what he/she
requests (authorization). These processes are identified in Figure 1 as “inbound authentication and authorization and
do pursue this aim. Most of the cloud infrastructures need authentication and authorization: in this case the MELODIC
platform acts as a client using appropriate credentials (available in an internal secure storage) to access them.
Furthermore, some extra authorization policies, to be enforced by the MELODIC platform, guarantee a finer grained
control on infrastructures access. The latter mechanisms are identified as outbound authentication and authorization in
Figure 1. MORPHEMIC interacts with users and deployment environments in similar ways, so the rationale is preserved.
However, the polymorphic adaptation makes it necessary to extend the concepts and to update the supporting technology
(Chapter 3).

The industrial requirements outline the need of two levels of security: the first one related to the platform and the access
to all the provided services, including Deployment Environment management; the second one guarantees for the
deployed application that the security level provided by the Deployment Environment is adequate with respect to the
security requirements of the application.

The industrial requirements related to security are listed in Section 2.1, while Sections 2.2 and 2.3 describe the
aforementioned kinds of security. Specifically:

• the Platform Security includes access control mechanisms, privacy, and confidentiality for user data and the
capability to prevent unauthorized access to the services offered to a specific user, along with the capability to
log all the security related operations

• the Deployment Security is the capability to select the most appropriate Deployment Environment and
application form according to the security requirements of the application: it has strong dependency on the
associated infrastructures representing the offer that MORPHEMIC will take into account for the application
(deployment & adaptive provisioning).

2.1 Security related requirements
The industrial requirements of MORPHEMIC, listed and described in Deliverable D6.1 Industrial requirements
analysis, make explicit the needs of the users in terms of security. Table 1 summarizes them.

Table 1 Security related requirements in Deliverable 6.1

ID Description Category

MEL-8 Secure and context-aware data access control mechanism Platform Security

UC-C-SEC.1 Support for traffic isolation Infrastructure

UC-C-SEC.2 Support for secure communications Application-related

UC-C-SEC.3 Support for security-related applications Security-management-
related services

UC-1.SE.8 Support for Security Management Security-management-
related services

UC-2.SE.2 Support for private execution environment Infrastructure

The requirement MEL-8 is derived from MELODIC and confirmed in MORPHEMIC. Specifically, it assures that
MORPHEMIC offers “the appropriate tools that guarantee the secure access and processing of all the involved data,
handled by big-data intensive applications deployed and maintained in multi-clouds: any user should be properly

D4.2 Security design and implementation

Page 12

authenticated before accessing data that reside in Cloud infrastructures”. The description embraces all the aspects of
the Authentication and Authorization for a platform managing a multi-cloud environment. The requirement is very
complex: the related aspects are made more explicit in Deliverable 5.3 of MELODIC [1]. Since MORPHEMIC extends
the multi-clouds support to Polymorphic Adaptation, also the enhancement of the related security functionalities should
be extended to cover the novel aspects.

The Platform Security is mainly finalized to meet this requirement and all its implications on MORPHEMIC features.
Concerning the design, the Authentication and Authorization are derived from and extend the corresponding
functionalities of MELODIC. Concerning the technology, some improvements have been introduced to increase the
effectiveness and the consistency of the whole process (Section 2.2).

The remaining requirements of Table 1 are focused on the security characteristics that the associated Deployment
Environments must provide. The three use-cases of MORPHEMIC are heterogeneous and embrace very different
contexts: the security requirements of their applications are different but, in general, highlight the perceived importance
of the Deployment Environment in this sense. Part of the listed requirements concern the supported environments, for
example, private clouds or on-premises. The motivation of these requests is related to security, since some legal
constraints (e.g., GDPR) or simple perception, suggest that some infrastructures or geographical locations are more
secure than others. Other requirements are focused on the security related services that some Deployment Environments
natively provide, such as Intrusion Detection systems. It is remarkable that this requirements group does not represent
a potential challenge for MORPHEMIC for two main reasons:

1. in most cases these services are supplied by the infrastructure provider
2. in case they are not supplied or if it is necessary to deploy appropriate clients, they should be considered by

MORPHEMIC as deployable applications and, according to the requirements, every potential application or
service must be deployable by MORPHEMIC.

Concerning the intrinsic features of the Deployment Environments, such as the type of environment or geographical
location, some considerations are very interesting:

• each associated Deployment Environment or node candidate will present part of the required features, but not
all: for example, it can be located in Europe but not in USA, can be a BYON (Bring Your Own Node),
belonging to a cloud or physical, public or private infrastructure. This means that the specific security
requirements of a certain application or service, must be matched with the specific features of the proposed
infrastructure or node candidate

• as a consequence of the previous point, the security characteristics of a certain Deployment Environment or
node will impact the selection of the offered nodes candidates as well as the overall Utility that can be achieved
by the application.

The Deployment Security (Section 2.3) is the answer to these considerations. MORPHEMIC will take into account also
the security requirements of the components of the deployed application to define a deployment configuration.
Therefore, the Utility will also include security related parameters.

2.2 Platform Security
The core functionalities of the MORPHEMIC platform are founded on MELODIC. They are integrated with the new
ones concerning Polymorphic Adaptation, Self-Healing and Hardware Acceleration, which require a revision of
MELODIC Security system to define where and how it has to be modified or extended.

At a glance, both the platforms enable users to deploy applications on certain environments, so the core functionalities
concerning security are the same. Specifically, users must be authenticated to access the platform and authorized to use
specific resources. As resource is intended both for the provided functionalities (e.g., user management, infrastructure
association, etc.) and the Deployment Environment (e.g., the instance of AWS belonging to a certain user or a specific
Edge Node).

The new functionalities of MORPHEMIC introduce the need of extra care at the technological level and in terms of
infrastructure hardening (Chapter 5). The technological details of the Platform Security will be described in Chapter 3,
for the Authentication and Authorization systems and for the new access logging functionality. Moreover, Chapter 5
will provide a more detailed technological analysis of the components that MORPHEMIC inherited from other projects.
These components must be adapted to support the new functionalities and the overall objectives of the new platform:
this includes also an analysis in terms of security to drive the subsequent development activities. Specifically, the

D4.2 Security design and implementation

Page 13

components inherited by MELODIC represent the core of the basic functionalities of MORPHEMIC and should be
improved in terms of generic security (i.e., open ports, proxying etc.). Furthermore, the Web Crawler, inherited from
the MARKOS4 project, must be analysed in order to understand if its security features are up-to-date and suitable for
the required interactions with heterogeneous external data sources.

The capability to log access related information, including access attempts, the involved resources and the results
(Section 3.3) represents the third functionality of the Platform Security. The Access Logging system provides useful
information to have a consistent control of the security status of the MORPHEMIC platform and to get data to identify
the causes of possible attacks and prepare the countermeasures.

2.3 Deployment Security
The MORPHEMIC platform is conceived to be associated with different Deployment Environments and deploy there
every application. In general, applications have specific security requirements that restrain the potential Deployment
Environments. The application requirements represent the sum of the requirements of the services and/or components
that constitute it, and could be related to data confidentiality, access control, intrusion detection, etc. In general, it is
possible to map the security requirements of a certain component to the node that hosts it through the CAMEL Model.
The mapping can be implicit or explicit: in the first case ,the Application Manager should include somehow in the Camel
Model the security requirements for each component. In other terms, for each node it should be explicitly indicated, for
example, the needed firewall settings or the required access control mechanisms. It is easy to understand that this would
significantly increase the complexity in the CAMEL Model and make more difficult the task of the Application
Manager.

The alternative solution consists in implicitly associating the security requirements to the component/service to be
deployed. For instance, let us consider an application which includes a web-GUI. It is possible to derive the following
security-related requirements for such an application component:

• the user interface should be exposed on port 80, which should be open on a public IP address
• if possible, all the other needed services (e.g., SSH) should be available on a private network
• the minimum possible services should be enabled
• SELinux, along with a specific configuration of the firewall, should be available and configured according.

These security requirements are valid for most of the web-GUIs: this example is valid in general, i.e., in most of the
cases, the security requirements are strictly related to the provided service. The implicit association between security
requirements and component/service, consists in the transparent application of the default security requirements for the
deployment of each component specified in the CAMEL Model. This simplifies the configuration steps in charge of the
Application Manager, providing, in most of the cases, the same result in term of security. This solution appears to
provide the best trade-off between configurability and security and has been chosen for the MORPHEMIC Deployment
Security.

In particular, the Deployment Security is founded on two complementary aspects:

• the security level provided by the Deployment Environment, defined by its security profile (described in Section
4.2), expressed as security parameters

• the security level requested by the application, defined by the security requirements of the application
components, specified in the CAMEL model, which are implicitly expressed in form of security parameters as
well: in other terms, a Database requires that its hosting node provides certain parameters, a GUI others etc.

These parameters are used in the Utility Function in order to compare what is required by the application and what is
provided by the Node Candidates and, finally, try to maximize the overall Utility considering also security.

As conceived, the detail of the Deployment Security will be transparent to the Application Manager, since he/she will
have to define only the required nodes and functionalities of the application: the related security requirements are
implicitly associated to the nodes and will be matched with the security profile of the hosting node.

The associated Deployment Environments and their nodes should present specific security profiles mapping their
security features. Even if some research topics concerning the classification of Deployment Environments (especially

4 https://cordis.europa.eu/article/id/117369-markos-global-integrated-and-searchable-opensource-software

D4.2 Security design and implementation

Page 14

cloud infrastructures) in terms of security exist (Section 4.1), an automatic classification has not been conceived so far,
and its design is out of the scope of MORPHEMIC. Therefore, security profiles will be manually associated to each
Deployment Environment or Node by the Infrastructure Manager (Section 3.2.1). For some well-known infrastructures
(e.g. AWS) the security profiles could be at least partially pre-determined along with the specific features of the
infrastructure: for other cases, including Edge or on-premises nodes, they will be manually defined through the process
described in Section 4.3. The security profile of a certain Deployment Environment is automatically inherited by all of
its nodes; however, the Scheduling Abstraction Layer and the ProActive Scheduler will enable to define multiple
security profiles on a single Deployment Environment according to the different available security features. In practical
terms, this means to (manually) define a sort of default security profile for a certain Deployment Environment,
containing the minimal provided security features, and a set of extended security profiles to override the default one and
include the more extended capabilities (Section 4.3).

D4.2 Security design and implementation

Page 15

3 Platform security’s functionalities and architecture

The Platform Security assures that the MORPHEMIC platform provides services with an adequate security level and
guarantees that the data are securely stored. The core functionalities are Authentication (Section 3.1), Authorization
(Section 3.2) and Access Logging (Section 3.3). Figure 2 reports the MORPHEMIC’s architecture, defined in the Figure
11 of Deliverable 4.1 (Architecture of pre-processor and proactive reconfiguration): the module in blue (called Security
Module, in that Deliverable), includes all the functionalities described in this section.

Figure 2 Architecture of the MORPHEMIC Platform

The Platform Security Module represents a cross component functionality: the actual implementation of the
Authentication, the Authorization and the Access Logging is distributed to different components. In particular the
MORPHEMIC platform provides services implemented by some components, such as the Utility Function Creator, the
Adapter, and the Solvers. The basic architecture of the Authentication mechanism is derived from MELODIC and is

D4.2 Security design and implementation

Page 16

based on a JWT Token: specifically, each request for a service must be associated to a token encoding the identity of
the requester (Section 3.1). All the components perform at least the token validation as a minimal authentication check,
while a subset of them also applies Authorization enforcement.

Figure 3 Platform security functionalities

More in detail, the relationship between the operations of the Platform Security is depicted in Figure 3:

• the Token Validation is the minimal task related to Authentication: a valid token has not expired and refers to a
valid identity

• the Full Authentication includes credentials verification, based on the token’s content (if existing), or the
generation of the token starting from a username/password pair: this task is performed once per-session by the
entry points of the platform

• the Authorization, at component level, includes the enforcement of a policy associated to the attributes related
to the identity obtained from the Token and possibly integrated with attributes related to the environment
(Section 3.2).

The simple token validation is preliminary to all the security tasks: each request forwarded to each internal service of
the MORPHEMIC architecture must be valid in term of issuer and expiration; otherwise, it must be discarded. Each
service or component of MORPHEMIC must validate the token before executing the respective (service) operation.
What is defined as “Full Authentication” is the verification of the user credential and the generation of the token: the
credentials are set in the User Interface and the LDAP based Authentication system performs the validation. Part of the
internal components of MORPHEMIC, identified through criteria exposed in Section 3.2, asks the Authorization system
to decide if a certain operation can be executed according to the requester’s privileges and the environment
(date/time/location etc.). The components that perform Full Authentication or Authorization are integrated to the
Logging system to keep track of the security related operations.

As mentioned before, Authorization decisions are requested only by some specific components and only Full
Authentication and Authorization operations are logged (not the simple Token Validation). This should guarantee an
acceptable trade-off between complexity (and performance) and security. In fact, the request for Authorization decision
involves several components and is per-service. In other terms, a certain user that is authorized to access a certain
infrastructure, is indirectly authorized to use all the related components (e.g., Scheduling Abstraction Layer, ProActive
Scheduler, Adapter etc.): if an authorization decision is requested for each component, it will provide the same result
and will introduce more latency. Furthermore, the services that require authorization are classified as critical, i.e., the
risk generated by unauthorized operations is high. Concerning the Logging System, the possibility to log all the Token
Validation operations would force the components to send logging messages to record if a certain token is still valid. In
order to analyse potential attack patterns, the access attempts through authentication or the events concerning

D4.2 Security design and implementation

Page 17

authorization privileges are much more valuable. For this reason, the increase in terms of complexity and latency to log
the Token Validation operations is not justified.

The Platform Security is also guaranteed by the so-called hardening, which includes all the tools and measures to reduce
the risks of external attacks. This aspect should be considered part of the Platform Security; however, since it has much
more to do with the technology than the design, it will be discussed in Chapter 5 where the status of the components
will be examined.

Figure 4 Key components of MORPHEMIC

Figure 4 shows the components and entities of MORPHEMIC: the components are part of the MORPHEMIC’s
architecture, and the entities are the resources which interact with it. The direction of the arrows represents the data flow
while the paradigm used is request/reply. The minimal Token Validation includes checksum and lifetime verification,
in order to prevent malicious external access and expired requests. The GUI provides controls suitable for human users,
however, MORPHEMIC will provide also direct Web Services access. In both the cases, the authentication is requested
to guarantee secure access: in order to easily express the login functionality provided by the access points, we will use
the term Login Client. The Login Client will indicate in this document the functionality to get the user credentials (in
different format, depending on the access point) and obtain the token (Section 3.1.1). This operation includes the Full
Authentication: the requests for services coming from the external must always pass through the Login Client to be
authenticated. This means that requests without any token or containing an invalid or expired one, discarded or, if
possible, redirected to the Login Client.

The following sections will describe in detail the Authentication, Authorization and Access Logging mechanism of
MORPHEMIC comparing them with the ones provided by MELODIC. Figure 5 shows all these functionalities: the
blocks in green have been introduced in MORPHEMIC. The new blocks concerns mainly the Access Logging, which

D4.2 Security design and implementation

Page 18

is the new functionality: however, the ABAC Authorization mechanism has modified its scope with respect MELODIC
and, on this sense, can be considered new as well.

Figure 5 Complete Platform Security System in MORPHEMIC

D4.2 Security design and implementation

Page 19

3.1 Authentication system
Concerning the Authentication, the MORPHEMIC platform plays the role of both a client and a server according to the
specific functionality requested:

• Server for the User-Authentication (Section 3.1.1), regarding inbound requests, to verify the identity of the users
accessing the platform

• Client for the Deployment Environment Authentication (Section 3.1.2), regarding outbound requests, when the
platform interacts with Deployment Environments and their authentication mechanisms: in these cases,
MORPHEMIC must log into the external environments by using specific credentials, provided by the
infrastructure owner during the configuration.

Both processes are supported by MELODIC as well: for this reason, some architectural aspects have been preserved. In
particular, MORPHEMIC supports username and password authentication against accounts stored on an LDAP
directory and the capability to internally store the credentials needed to access the Deployment Environment [1].
Concerning the technological aspects, the User-Authentication does not experience any major modification, while the
Deployment Environment Authentication in MORPHEMIC is performed by the new Executionware, based on the
ProActive Scheduler5 that extends the range of supported Deployment Environments including, at the time of writing
this Deliverable, Edge Nodes.

3.1.1 User-Authentication

The User-Authentication system of MORPHEMIC is derived from MELODIC: Figure 6 shows the generic flow.

Figure 6 Authentication system

As mentioned before, the Login Client is the generic component where the user supplies his or her credentials: all the
access points of MORPHEMIC, GUI and Web Services, exhibit this functionality. The credentials are then forwarded
to the Authentication Server, checked against an LDAP, and the authentication is returned in form of a Token.

As the details of this process are described in [1], this section focuses on how this process is adopted by MORPHEMIC
and which components exploit it.

The Authentication process produces an JWT Token ([2] and [3]) which is used to identify the request and is checked
by the components that need authentication and authorization. The association is possibly automatic, performed
transparently at GUI level by using the session. For stateless Web Services the token should be manually included in
the Authorization header of the HTTP message.

5 https://proactive.activeeon.com

D4.2 Security design and implementation

Page 20

Specifically, the payload of the token contains two mandatory pieces of information:

• the username of the requester (subject)
• the expiration time.

Figure 7 Authentication operations flow

Figure 7 shows the operations flow of the Authentication. The example contains the Full Authentication and Token
Validation functionalities. The user sends a service request (e.g. application deployment); this can be done in two
different ways:

1. through GUI, so after provided the credential and obtained a Token in the session
2. through Web Services, so by manually including the Token obtained after an independent authentication

process.

In both the cases credentials and service request pass through the Login Client functionality which manages the Full
Authentication Process by cooperating with the Authentication Server and the LDAP. The final result (of the successful
authentication) is the Token which is included in the request that, in turn, is forwarded to the Component executing the
operation. This component (e.g., the Executionware) validates the Token and executes the action.

The local Token Validation consists in the verification of the token signature and expiration: this reduces the risk to
accept malicious or expired requests. It is important to remark that in this example the Authorization process is not
considered: more in general, some components also verify the respective Privileges (Section 3.2).

3.1.2 Deployment Environment Authentication

In order to interact with the Deployment Environments, MORPHEMIC must comply with their security mechanisms.
For instance, cloud providers require authentication to access their services and manage their virtual environments. In

D4.2 Security design and implementation

Page 21

MELODIC this was the only use case, explained in Chapter 7 of [1], where the credential storage module is described
as well. In MORPHEMIC the context is much more generic: Deployment Environments are not only cloud providers,
but also other sets of nodes, including Edge and isolated nodes provided according to the BYON paradigm.

Figure 8 MELODIC's Cloud Providers’ credential flow

Figure 8 is identical to Figure 10 of [1] and shows the MELODIC’s Cloud Providers’ credential flow, which is
generalized in MORPHEMIC by replacing Cloudiator with ProActive and the Cloud Providers with generic Deployment
Environments (Figure 9).

Figure 9 Deployment Environment credentials flow

D4.2 Security design and implementation

Page 22

The picture is detailed in Deliverable 5.3 (Deployment artefact manager), specifically, a new Deployment Environment
is registered by the Executionware Access Layer (SAL) which stores its access credentials and include its nodes among
the potential nodes candidates. The deployment process uses the stored credentials and leverages the ProActive Resource
Manager (RM) to manage the Deployment Environment.

Cloud Providers support a wide set of authentication factors, such as username/password, certificates, source address,
and multi-factor. The introduction of non-cloud environments extends this set, introducing also the use case of open-
access environments, i.e., environments or nodes that do not support any kind of authentication. For instance, in some
cases authentication does not make sense, such as when the user associates a proprietary hardware node in a protected
environment. As defined by the requirements of Deliverable 6.1 (Industrial requirements analysis), MORPHEMIC will
have to consider also non-Cloud Deployment Environments: as a consequence, the aforementioned security related
configuration should be supported. The Deliverable 4.1 (Architecture of pre-processor and proactive reconfiguration)
describes how the new Executionware, based on the ProActive Scheduler, will support them in general, while Section
3.1.2 of this Deliverable will give more details in terms of security.

In MORPHEMIC, the component that manages the application deployment is MELODIC: among the MELODIC’s
components, the Executionware enacts all the deployment decisions. The version of MELODIC used in MORPHEMIC
replaces the original implementation of Executionware, Cloudiator6, with the ProActive Scheduler. The ProActive
Scheduler manages the Deployment Environment credentials for all the supported Deployment Environments, including
Edge Nodes. It guarantees flexibility, efficiency and high-quality support, provided by a member of the project
consortium, ActiveeOn. The ProActive Scheduler supports all the aforementioned use cases, included open-access
environments and edge nodes: it provides a credential storage module as well. In terms of security, the replacement of
Cloudiator with the new component did not impact the operation flow, which will be preserved, as shown in Figure 7:
more generic information on the ProActive Scheduler is available in Deliverable 4.1 (Architecture of pre-processor and
proactive reconfiguration).

3.1.3 Implementation details: Executionware – ProActive Scheduler

The ProActive Scheduler acts as a central entity that controls resources aggregated from heterogeneous environments
like cloud providers, legacy servers, and edge devices. The ProActive Resource Manager is responsible for orchestrating
and monitoring the connected devices.

The Resource Manager assures that the resources decided by the Upperware are available to the ProActive Scheduler.
Here we have to draw a distinction between connecting resources coming from cloud providers that requires access
authentication, and BYON resources that are connected directly from the nodes.

Once the MELODIC Upperware decides on using a certain Cloud provider, the Executionware (SAL) will be contacted
to execute the decision. Consequently, the Executionware communicates with a component called Connector-IaaS7 that
handles the communication with several cloud providers.

In definition, Connector-IaaS creates a single endpoint where all the communication with the infrastructure is unified.
This improves flexibility and reduces the provider dependencies by allowing easy migration from one provider to
another. The multi-IaaS connector enables to do CRUD operations on different infrastructures on public or private
Clouds (AWS EC2, Openstack, VMWare, Docker, etc). These operations are conducted using Apache jclouds8 that
provides a unified JSON format to connect to several cloud providers.

On the other hand, to connect BYON nodes to the Executionware, the owner of the nodes will provide the SSH
credentials that will allow the Executionware to automatically connect the nodes to the Resource manager using
ProActive SSH infrastructure. In this step, SAL creates a new user account on the BYON nodes and adds the server’s
public SSH key to the set of authorized keys for the newly created user. As a result, ProActive is granted full control of
the nodes through SSH.

6 https://github.com/cloudiator
7 https://github.com/ow2-proactive/connector-iaas
8 https://jclouds.apache.org/

D4.2 Security design and implementation

Page 23

3.2 Attribute based authorization
An authenticated user can access a subset of the functionalities of the MORPHEMIC platform: the functionalities for
which he or she is authorized.

Each functionality is implemented by one or more components (Figure 4), whose access is limited to the users associated
to certain attributes and in certain environment (context) conditions. The environment is by itself defined by some
attributes; for this reason, the best authorization model appears to be the Attribute Based Access Control (ABAC) [4].

The ABAC model is very flexible since the attributes used to define policies can refer to different elements. In particular,
the model supports per-application policies, aimed, for example, to permit the deployment of a certain application only
on a specific Deployment Environment. This possibility can be useful for possible future interesting extensions of
MORPHEMIC, which, at the time of writing this deliverable, is still bound to a single application, but the future releases
could include multi-application support without any impact on the security.

Concerning the design, the Authorization system of MORPHEMIC is an evolution of the MELODIC’s one. MELODIC
supports two parallel authorization functionalities:

• User Role-Based Authorization
• Infrastructure Pre-Authorization.

This logical separation is very useful, since the two functionalities have different scopes. The former regards the
definition of the actions that groups of users are allowed to perform; the latter regards the privileges to access a certain
Deployment Environment, which depend on internal and external factors, such as the role of the requester or the date-
time or the geographical location of the infrastructure.

This logical separation in MELODIC is technological as well: this means that the two authorization functionalities are
separated and use different technologies. In particular, the former is provided as part by the JWT Token based
mechanism used for the Authentication system, which defines also a set of roles to be associated to users and the
corresponding actions associated with these roles (RBAC), as shown in Figure 10.

Figure 10 MELODIC's RBAC Authorization system

The Pre-Authorization, instead, is a dedicated system able to process and enforce complex policies based on attributes
(ABAC).

It is easy to understand that the technological solution used to implement the latter functionality can easily implement
the former. Exploiting this possibility will give the following advantages:

• simplification of the technological architecture: all the operations related to Authorization are implemented by
using a single technology

• extensibility of the User-Authorization system, which can support complex attributes, not only roles

D4.2 Security design and implementation

Page 24

• complete separation between authentication and authorization, providing more manageability.

As a consequence, the MORPHEMIC Authorization system is based on an ABAC model, has been implemented through
a XACML architecture and provides the following functionalities:

• User-Authorization, currently based only on user attributes, identified as roles to define user-related privileges
• Deployment Environment-Pre-Authorization, based on generic attributes, to define the privileges to access the

Deployment Environments.

The next sections will detail the design and the technology of these two functionalities, providing the roles currently
supported by MORPHEMIC and some examples of attributes.

3.2.1 User-Authorization and Deployment Environment-Pre-Authorization: concept and design

As mentioned above, the Authorization system of MORPHEMIC can be considered as composed of two logical
mechanisms, derived from MELODIC: User-Authorization and Deployment Environment-Pre-Authorization.

Both the mechanisms implement the ABAC model, however the User-Authorization considers only the roles as
attributes associated to the user, actually implementing a Role-Based model. In fact, a role represents the duty or the
function that an actor has in a specific context and is strictly related to the functionalities available to each user: it can
be seen as a particular kind of attribute of this user. According to this consideration, the User-Authorization in
MORPHEMIC implements a RBAC model as a specification of an ABAC model.

The User-Authorization mechanism controls the user operations on the platform. Each MORPHEMIC user can be
associated to the roles shown in Figure 11.

Figure 11 Roles in MORPHEMIC

This figure shows a series of hats, representing the roles supported by MORPHEMIC:

• Common User: can manage all the operations and resources related to a certain application, such as to perform
deployment or manage associated Deployment Environments (but not associate or remove them from the
availability of MORPHEMIC)

• Administrator: inherits the privileges of the Common User; furthermore, it can perform administrative tasks,
such as user management (create user accounts, assign privileges etc.)

D4.2 Security design and implementation

Page 25

• Technical User: is used only internally by Metasolver component in order to create reconfiguration processes
• Infrastructure Manager: performs all the administrative operations concerning Deployment Environments, such

as association, configuration, definition of the Pre-Authorization Policies and removal.

The first three roles are present also in MELODIC, with the same meanings and the same relationships: specifically, an
Administrator is also a Common User and the Technical User is actually an internal role. The inclusion of the
Infrastructure Manager is due to the extension of the range of supported Deployment Environments. The increased
complexity of all the related management operations suggested the idea to define a specific role. Taking into account
the hard-coded relationships among the roles, it is possible to combine some roles that can be obtained by users with
some interesting privileges. For instance:

• Infrastructure Manager-Administrator, which has full control of the platform, including user management,
infrastructure management and application management

• Infrastructure Manager-Common User, which has full control on the Deployment Environments and application
related aspects.

The Pre-Authorization system is inherited from MELODIC, plays the same role and uses the same technology.
Specifically, Pre-Authorization allows or denies certain users under certain conditions to access certain Deployment
Environments. It is managed by the MORPHEMIC platform and is distinguished from the security mechanisms of the
Deployment Environments. In particular, the involved components are the Adapter and the Scheduling Abstraction
Layer, before the actual deployment starts (Figure 12).

Figure 12 Pre-Authorization and environment's authentication processes

Pre-Authorization allows a fine-grained control on the accesses to certain Deployment Environments, limiting the
deployment operation to certain users, certain periods, and certain locations. For example, it is possible to define policies
that deny the deployment of databases on Deployment Environments located outside the EU. Similar policies could be

D4.2 Security design and implementation

Page 26

defined also by the Deployment Environments, but in some cases, such as Edge Nodes or private Clouds, these aspects
are not implemented such that a common mechanism provides an added value.

Pre-Authorization is a generic implementation of the Attribute Based Access Control (ABAC) model, since it considers
a wide range of heterogeneous attributes, related to the user, the Deployment Environment (DE) or the context, which
are retrieved in different ways. For example, DE attributes can be defined through configuration or can be retrieved by
the Executionware; the model is very flexible and, if the future implementations of MORPHEMIC will support finer-
grained user profile with several attributes, it is possible to use them to define complex policies.

Figure 13 Use case diagram of Pre-Authorization

Figure 13 shows the use case diagram of the Pre-Authorization process:

• Plan Data Collection includes the retrieval of user and resource attributes by using different mechanisms
• Context Collection includes, for example, the retrieval of current date-time or current location
• The Deployment Policies are stored in a specific document associated to a certain Deployment Environment.

Examples of basic policies composed by the attributes used in the Pre-Authorization process are the following:

• “deny the access of certain roles to a certain Deployment Environment at night-time”
• “allow the access to a certain Edge Node only to a certain user”
• “limit the list of locations in which data can be stored”.

These policies comprise attributes associated to the user, the environment and the resource:

• examples of user attributes are username, role, source IP address, location of the user
• environment attributes are time, date, day of the week
• resource (Deployment Environment or node) attributes are location of the DE, type of DE, owner of the DE,

number of cores of the node, memory

The two logical functionalities, User-Authorization and Deployment Environment-Pre-Authorization are
implemented on a unique XACML architecture based on the ABAC schema. As mentioned above, the RBAC model
of User-Authorization is conceived as a particularization of ABAC. Policies in general are based on combinations
of different categories of attributes.

D4.2 Security design and implementation

Page 27

Table 2 Examples of policies

Role based policy An Administrator is allowed to create users
Attribute based policy A Common-User can deploy applications on infrastructures located in EU
Attribute based policies with
environment attributes

A Common-User can deploy applications on infrastructure located in EU from 8
a.m. to 8 p.m.

Table 2 shows three sample of attributes based policies. All the policies contain a role attribute taken from the roles
listed in Figure 11: the first one is a pure role-based policy, the second considers also an attribute related to the
infrastructure (location) and the third one also the environment (time of the day).

Another difference is that the first policy in MORPHEMIC is a User-Authorization policy, which defines the behaviour
of the platform for the internal operations, the others are Deployment-Environment-Pre-Authorization policies, which
should be defined by the Infrastructure Manager to control accesses to a specific infrastructure or group of
infrastructures.

The first policy can be processed by using the same technology of the others removing the attributes not related to the
user. This means that the functionalities of the specific RBAC system (Figure 10) of MELODIC can be provided by the
ABAC system. However, the latter, whose architecture will be described later, is much more complex and introduces a
degradation on the performance. In order to reduce this problem, preventing an impact on the overall performance of
the platform, a careful evaluation of the components that need specific authorization controls has been conducted. The
evaluation is finalized to provide a trade-off between performance and security (in terms of authorization). A set of
components representing the interfaces for user-related functionalities has been defined: these interfaces should assure
that the related functionalities are used only by authorized users. This reduces dramatically the number of components
that should be integrated with the ABAC Authorization system, reducing also the performance degradation and
preserving the simple and consistent approach defined.

Figure 14 Components which need authorization

D4.2 Security design and implementation

Page 28

Figure 14 highlights, among the components of Figure 4, the ones integrated with the Authorization system. In
particular:

• The GUI represents the main access point of the platform. It exposes the main commands for the user and
potentially should be able to reconfigure also its presentation according to the allowed operations

• The Adapter is responsible for preparing a complete plan of application reconfiguration for new deployments
(Deliverable 4.1 - Architecture of pre-processor and proactive reconfiguration)

At the time of writing this Deliverable, the Authorization system protects the aforementioned modules taking decisions
based on the user attributes (roles and generic attributes), resource attributes (e.g., information related to the Deployment
Environment, such as location) and environment attributes (such as date and time). Even if the architecture is completed
and consolidated, it is possible that in the future new functionalities will be added. Furthermore, even during the
development phase, or after the project, it is possible that the effectiveness of the Authorization process should be
improved by integrating other components. The architecture of the XACML Authorization system can be easily
integrated in service-oriented architectures.

The next section analyses how attributes are obtained, decisions are taken and policies are enforced.

3.2.2 Implementation details: XACML, AOP and interceptors

The implementation of the ABAC/RBAC Authorization system in MORPHEMIC is based on the eXtensible Access
Control Markup Language (XACML). XACML is a standard produced by the Organization for the Advancement of
Structured Information Standards9 (OASIS) to represent access control policies in XML format. The most recent version
of XACML is 3.010.

The standard is based on the following concepts:

• Rule, which defines an effect (decision, i.e., permit or deny) based on a target (defined by certain attributes)
that can be the requester (subject) or the resource

• Policy, a set of relevant rules, whose effects (i.e., partial decisions) are reconciled using a rule-combining
algorithm that produces the policy decision combination of rules based on a rule-combining-algorithm

• Policy-set, a combination of policies based on a policy-combining-algorithm.

Target is a type of pre-filtering condition that narrows applicability of a rule/policy/policy-set to certain subjects or
resources or actions or combinations of them.

In technical terms, Target is checked using only the info already available from the authorization requests. ABAC engine
does not collect info from other components. Rules/Policies/Policy Sets whose Target does not match the given
authorization request info are simply ignored. ABAC engines evaluate Targets in order to quickly identify the relevant
rules and policies and ignore the rest, thus improving performance and response time.

After pre-filtering with Target, an ABAC engine will evaluate the Rule conditions, and if necessary, it will contact other
components (using plugins called PIP context handlers, Figure 15).

The other elements of an ABAC statement are the Subject, associated to who asks for accessing a certain resource and
the Resource, associated to the resource to be accessed. Furthermore, the Action defines the action to which the decision
is referred while the Environment defines the context in which a certain decision should be taken, such as a certain date
and a certain time.

When a rule condition evaluates to True the corresponding Rule effect (permit or deny) is yielded as a partial
authorization decision. If more than one rules in a policy yield partial decisions, then the Policy's rule-combining-
algorithm is used to reconcile any decision conflicts and produce the policy decision. The same happens if two or more
policies in the same policy set yield policy decisions.

Other concepts of XACML that are useful in MORPHEMIC are:

• Advice, an action that could be performed in case of a specific decision has been taken

9 https://www.oasis-open.org
10 http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html

D4.2 Security design and implementation

Page 29

• Obligation, an action that must be performed in case of a specific decision has been taken.

In other terms, if a policy or a rule defines that a certain data set must be accessed by a common user with the obligation
to notify an administrator, the Authorization system must notify an administrator and if it cannot, the data cannot be
accessed. If the same policy contains instead the advice to notify an administrator, the data is accessed even if it is not
possible to notify an administrator. Section 3.3 will show how these concepts are used in MORPHEMIC.

The architecture of a generic XACML-based ABAC Authorization system is based on the following elements:

• Policy Administration Point (PAP): the point which collects and administrates the policies

• Policy Decision Point (PDP): it receives authorization requests and makes the authorization decisions

• Policy Enforcement Point (PEP): it sends authorization requests to PDP and executes its decisions

• Policy Information Point (PIP): it provides complementary attributes to the PDP (e.g., part of subject or
resources attributes and environmental attributes).

Figure 15 shows the generic architecture of a complete XACML-based ABAC Authorization system.

Figure 15 XACML generic architecture

The Policy Information Point gets the attributes from subject, resource and environment and provides them to the
Context Handler. The Context Handler is the core of the architecture, since it gets all the needed information, including
the details on the resource, such as the data stored, as well as requests and obtains the decision from the Policy Decision
Point. The PDP, according to the policies stored in the PAP and the attributes obtained from the Context Handler takes
a decision and communicates it to the Context Handler. Finally, the PEP enforces the decision and executes obligations
or advices if needed.

D4.2 Security design and implementation

Page 30

Figure 16 Authorization system in MORPHEMIC

Figure 16 shows how the architecture exposed in Figure 15 is deployed in the MORPHEMIC platform. Each of the
components highlighted in Figure 14 is integrated with a PEP enforcing the decision taken in the Authorization Server.
The Authorization Server contains PDP, Context Handler and PIP to collect the information and process the decision.
MORPHEMIC can contain several instances of Authorization Server to balance the load and increase the performance.
The PIPs instances get data about internal resources and external context (Context Collector). Finally, the PAP acts as
a policy storage and provides the policies on which PDPs will decide.

The technological implementation of the MELODIC’s ABAC Authorization system is inherited from MELODIC and
is based on the XACML standard. It is built by using Balana11, which is the implementation of XACML standard
provided by WSO212 based on SUN’s XACML Implementation13. As mentioned above, this technology in MELODIC
implements only the Pre-Authorization system, while in MORPHEMIC also the User-Authorization system.

As MORPHEMIC uses internally MELODIC, a technological compatibility is considered very important. For this
reason, the integration mechanisms used in MELODIC for authentication and authorization play an important role also
in MORPHEMIC. Specifically, both aspect-oriented programming14 (AOP) and Spring Interceptors15 methods will be
used in MORPHEMIC. They constitute different mechanisms to intercept methods calls and include pieces of code to
be executed before or after the method invocation. The pieces of code can be used to decode the token and call the
authorization service.

3.3 Access Logging system
The MORPHEMIC platform provides a functionality to log all the information about authentication and authorization
attempts. This feature is implemented by the Access Logging system. The access information produced by the
functionalities described in Sections 3.1 and 3.2 are stored as a log in a tracker.

11 https://github.com/wso2/balana
12 https://wso2.com/
13 http://sunxacml.sourceforge.net/
14 https://docs.spring.io/spring-framework/docs/2.5.x/reference/aop.html
15 https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/servlet/HandlerInterceptor.html

D4.2 Security design and implementation

Page 31

Figure 17 shows the generic flow of the logging operation following a User-Authentication (Section 3.1.1) operation:
the generic Login Client represents the User Interface (Figure 4), which, at the time of writing this deliverable, is the
only user access point. The Authentication Server, which verifies username/password through the LDAP before issuing
the token, forwards the User-Authentication Log to the Access Logging system.

Figure 17 User-Authentication Log Flow

Figure 18 shows the same process in case of the Deployment Environment Authentication (Section 3.1.2): in this case
the client which interacts with the infrastructure is the Executionware (represented by ProActive). It executes the
operations defined by the Upperware components: specifically access the Deployment Environments through the stored
credentials. The details and results of each access attempt are forwarded in form of Deployment Environment
Authentication Log.

D4.2 Security design and implementation

Page 32

Figure 18 Deployment Environment Authentication Log Flow

Finally, Figure 19 shows the flow in case of Authorization (Section 3.2): in this case the Authorization Server forwards
the Authorization Log. Specifically, the XACM standard include advices (Section 3.2.1) to ask for performing specific
actions according to the result of an authorization decision: in this case, the advice requires to forward the Authorization
Log.

Figure 19 Authorization Log Flow

D4.2 Security design and implementation

Page 33

3.3.1 Architecture of the Access Logging system

The Access Logging system is agent-based and is integrated in the Authentication and Authorization systems. Figure
20 shows the integrated architecture, where in green the components of the Access Logging system are highlighted.

Figure 20 Architecture of the Access Logging system

The three agents are related to the three flows described in the previous section, specifically:

• Platform Access Logger, which collects and forwards the logs related to the User-Authentication
• Deployment Environment Access Logger, which collects and forwards the logs related to the Deployment

Environment Authentication
Policy Decision Logger (PDL), which collects and forwards the logs related to Authorization. The PDLs are associated to the Authorization

Servers (N load balanced instances,

• Figure 16). The logs are forwarded to the Access Tracker which indexes them and enables easy access through
REST APIs.

The log messages are formatted in JSON and contain the following fields:

Timestamp (mandatory)

User (mandatory)

D4.2 Security design and implementation

Page 34

Role

Action (mandatory)

Resource

name

action

Result (mandatory)

Info

whose meaning is the following:

• Timestamp the timestamp of the related event
• User: the username of the associated user
• Role: the associated role, if existing
• Action: defines the requested action, such as User or Deployment Environment Authentication or Authorization
• Resource: fields related to the resource (valid only for authorization)

o name: the requested service/resource/environment
o action: the operation requested on the resource

• Result: if the action resulted in a granted or denied request
• Info: other generic information, such as the error log or reason in case of denied authentication/authorization

(for example, obligation not executed).

The mandatory fields (timestamp, user, action and result) are included in any log record. The other fields depend on the
logged operation. Specifically, it does not make sense to include a role name for a User-Authentication action for some
reasons:

• an unsuccessful authentication does not involve any role assignment
• an authenticated user could not have any role
• the role association happens after the authentication process.

The Resource Name and Resource Action are referred only to authorization operations, since authorization involves
resource access. Finally, the Info field contains generic, optional information: in particular it is useful when the access
is denied to specify the reason, such as an internal error, an obligation not executed, or an invalid policy etc.

3.3.2 Implementation details: Access Tracker and agents

At the time of writing this Deliverable, the technological architecture is completely defined, but the implementation has
not started yet.

The Access tracker will be based on Elasticsearch16.

16 https://www.elastic.co/elasticsearch/

D4.2 Security design and implementation

Page 35

Elasticsearch is a search engine based on the Lucene17 library: it provides a distributed, multitenant-capable, full-text
search engine with an HTTP web interface and schema-free JSON documents. Elasticsearch is developed in Java and is
dual-licensed under the source-available Server-Side Public License18 and the Elastic License19.

As shown in Figure 20, Elasticsearch (Access tracker) will get data from the agents through its REST API. Elasticsearch
also provides API to search and retrieve them.

The agents will get the logs from the specific security components and forward them to the Access tracker. Their specific
implementation depends on the associated flow:

• the User-Authentication Agent will be integrated in the LDAP to intercept the authentication requests
(usernames) and responses

• the Deployment Environment Access Logger will be part of the Executionware which then communicates the
cloud provider credentials to the ProActive server through the Resource Manager endpoints.

• the Policy Decision Logger will be integrated to the ABAC authorization server of MORPHEMIC in order to
record authorization requests, the (final) authorization decision, any partial decisions (per policy or policy rule),
as well as the attributes and their values, used to evaluate a request against the active ABAC policies.

Table 3 specifies for the aforementioned cases, which fields of the log message are used along with the mandatory ones.

Table 3 Fields used in the MORPHEMIC's security logging messages

Case (Agent) Fields

User Authentication (User-Authentication Agent) Info (in case of authentication failed to specify the
reason or error)

Deployment Environment Authentication (DE Access
Logger)

Resource.name (used infrastructure)
Info (credential used – password/secret keys not logged)

Authorization (Policy Decision Logger) For each decision (partial and final):
Role (user role)
Resource.name (service or infrastructure)
Resource.action (action requested)
Info (if a reason message is associated to a denied
authorization it is logged here)

17 https://lucene.apache.org/
18 https://www.mongodb.com/licensing/server-side-public-license
19 https://www.elastic.co/licensing/elastic-license

D4.2 Security design and implementation

Page 36

4 Deployment Security

In MORPHEMIC, the Deployment Security is defined as the capability to select the most suitable Deployment
Environment according to the security requirements of the application.

This research topic is not consolidated yet, but some work is being done. For example, the Cloud Security Alliance20
defined a matrix to control the security related features provided by Cloud infrastructures21. Other EU projects are
focused on specific certifications to define an objective security level of cloud infrastructures (MEDINA22).

This is not the main scope of MORPHEMIC, however, some use-cases require a certain level of control on the security
features when a Deployment Environment is selected, on the other hand MORPHEMIC should not limit the analysis to
the Cloud but embrace also the other supported Deployment Environments. This chapter provides a minimal analysis
and a potential solution that could be improved during or after the project.

4.1 Introduction and motivations
Most of the requirements listed in Table 1 refer to this aspect, along with several implicit requirements related to the
capability to support specific Deployment Environments.

Table 4 Requirements indirectly related to deployment security

ID Description Category

MOR-SE.2 MORPHEMIC must support Hybrid
Clouds Supported Environments

MOR-SE.6 MORPHEMIC must support on-
premises environment Supported Environments

MOR-SE.10
MORPHEMIC could support
environments different than the ones
listed in MOR-SE.1-MOR-SE.9

Supported Environments

UC-C-SE.1 MORPHEMIC must support
hardware Supported Environments

UC-C-SE.2

MORPHEMIC must support
deployment configurations spanning
across multiple geographical
locations

Supported Environments

UC-C-UF.4
MORPHEMIC must support
geographical constraints in the
deployment configuration

Parameters for the Utility Function

Table 4 shows some requirements related to the supported environments. For example, some use cases ask to control
the geographical location (UC-C-SE.2) for data storage, usually because it is important for GDPR; in other cases, the
support for on-premises environments (MOR-SE.6) or hybrid clouds (MOR-SE.2) are requested to have much more
control on the physical location where data is stored. These are all motivations related to security and, in most cases, the
motivations behind the requirements impacting on the Deployment Environments are related to security.

20 https://cloudsecurityalliance.org/
21 https://cloudsecurityalliance.org/research/cloud-controls-matrix/
22 https://cordis.europa.eu/project/id/952633

D4.2 Security design and implementation

Page 37

The identification of a series of constraints defining a limited set of usable Deployment Environments or nodes is the
simplest solution to assure an acceptable security level to specific applications. For instance, considering a database
hosting personal data, it is possible to ask MORPHEMIC to use an on-premises node to host it.

Some limited options on this sense are already available by leveraging the mechanisms provided by the Platform
Security. Specifically, Pre-Authorization is very flexible and, potentially, can define policies related to geographical
location or other resource attributes to help to increase the security of the overall deployment. However, the main
limitation of this possibility is due by the fact that the policy is applied after the selection of the Deployment
Environment or Node and does not include an alternative. In other terms it is possible only to decide if the database can
be deployment on that specific node, not to determine the best node where the database can be deployed.

According to this consideration, to build a decision mechanism about the most secure Deployment Environment or Node
basing only on the Pre-Authorization is not specific and, even if it was integrated to cover the missing aspect, probably
it would be cumbersome.

A more interesting option is to identify the candidate Deployment Environments and candidate nodes, according to a
set of security parameters and select them only if some security requirements related to the application are met.
Specifically, the CAMEL model includes information on the needed components, that, provide an idea on the security
requirement, as well as the deployment model.

At the Deployment Environment side, the definition of an associated security profile, implicitly extended to the nodes,
is needed. The security profile is a set of information defining the security parameters provided by the Deployment
Environment. These parameters are listed and detailed in Section 4.2: at the time of writing this Deliverable, it is almost
impossible to retrieve them from the Deployment Environments through queries or any sort of automatic inspection.
The most effective solution seems to be the manual definition of a default security profile associated to a certain
Deployment Environment to be used for reference when a certain security requirement is raised by a certain application.
In particular, especially for on-premises and edge environments, the Infrastructure Manager (Section 3.2.1) manually
defines the security profile of the Node or Deployment Environment (Section 4.2).

D4.2 Security design and implementation

Page 38

Figure 21 Deployment security flow

Figure 21 shows the flow of the Deployment Security system of MORPHEMIC. The security profiles are associated to
specific groups of Node Candidates (in this case, belonging to a Cloud infrastructure and a Edge group of nodes) at the
Executionware level. The security profile integrates the infrastructure profile needed to associate the Deployment
Environment to the platform. In order to take a decision on the selection of the Node Candidate for the deployment, the
security profile is matched against the security requirements in order to maximize the Utility that will take into account
also the security parameters (Security Utility).

The Deployment Security integrates the core functionalities of MORPHEMIC; in other terms, it provides new
parameters on which the selection of deployment nodes will be performed. In this sense, there is not any specific
component of Deployment Security, but some components, involved in the evaluation of the Utility and in the selection
of the Nodes, are impacted to implement this functionality. Specifically, the Utility Generator should take into account
the security utility values, while the Executionware (Section 4.3) will host the data related to the security profile of the
Deployment Environments.

In particular, as suggested in Figure 22, the Utility Generator, CP Generator, Solvers and Metasolver cooperate to select
the best Deployment Environment offer according to the security parameters provided. These components will produce
a deployment instance model which the Executionware will deploy on the selected Deployment Environments.

D4.2 Security design and implementation

Page 39

Figure 22 Deployment security in the MORPHEMIC architecture

The Executionware is also involved in the process, as it stores the security profile along with the other information
associated to Deployment Environments, in order to present the Node Candidates with the related security parameters.

The security requirements of the application are related to the security requirements if its components. For instance,
storages, web interfaces or service buses require certain specific security features from the node on which they are
deployed. In other terms, the security features requested to a certain node are related only to the element (component or
service) to be deployed on it and cannot be manually defined by the user. This simplifies the configuration and prevents
the user from getting improper security levels for specific components, reducing the possibility to have insecure
configurations.

D4.2 Security design and implementation

Page 40

Figure 23 Deployment Security’s detailed flow

Figure 23 shows the flow of Figure 21 detailed to better expose the previous considerations. Specifically, the CAMEL
Model defines the role of each component to be deployed (database, server etc..) on a certain node: this can be interpreted
as a component list from which the security requirements can be retrieved for each node. In particular, in CAMEL, the
component definitions give information of the functionalities of each component through a specific annotation from the
Meta Data Schema (MDS), and, as a consequence, these functionalities imply the security requirements of their hosting
nodes.

The Executionware retrieves a list of node candidates according to the CAMEL model: the list is stored in a database.
The Solver takes the final decision in order to maximize the utility taking into account also security parameters and
forwards the decision to the Executionware for applying it.

D4.2 Security design and implementation

Page 41

Figure 24 Security responsibility levels

The flow described above, shows that MORPHEMIC introduces a new responsibility level, in terms of security.
Specifically, now, the security level of an application depends also on the deployment configuration. Figure 24 shows
the introduction of an intermediate responsibility level, related to MORPHEMIC. In particular:

• in legacy application deployment procedures, the Application Manager is responsible for producing adequate
security requirements. By using MORPHEMIC, he or she is mainly responsible to produce the right CAMEL
model, defining the needed components with the required detail level. The Application by itself must be
developed and deployed according to the best practices in terms of security

• as responsible to the configuration of each new Deployment Environment, the Infrastructure Manager must
assure that the security features of the associated Deployment Environment and its Nodes are correctly mapped.
More in general, the Deployment Environment and the Nodes must not present security holes and should in
terms of network or platform (e.g. latest security patches installed)

• the Deployment level is the main responsibility of MORPHEMIC, in particular of MELODIC, considered as
one of its components: it includes matching the security requirements of each application component, with the
security features of the nodes. The application security requirements and the Deployment Environment security
features are expressed in terms of security parameters (Section 4.2).

The following sections will detail the main components involved in this flow:

• defining the functionalities and the technical aspects of the Deployment Environment security parameters
(Section 4.2)

• how the Scheduling Abstraction Layer, supported by the ProActive Scheduler, retrieves the candidate nodes
(Section 4.3)

• how the profiling, reasoning and adaptation tasks evaluate and use the security parameters and the security
requirements so as to select the best nodes (Section 4.4).

4.2 Deployment Environment security profile, security requirements and security parameters
Deliverable 5.3 (Deployment artefact manager) describes how the Executionware manages the association of a new
infrastructure through the method addCloud. Specifically, this method defines a Deployment Environment through a set
of parameters like the endpoint, the infrastructure type etc. This profile is stored by the Executionware that identifies
each node candidate according to the profile of the related Deployment Environment. Concerning security, the concept
is very similar: a set of security parameters, associated to the Deployment Environment, integrates the mentioned
profile, defining a security profile. This profile is used by the Upperware to select the best node candidates for a specific
deployment.

D4.2 Security design and implementation

Page 42

Figure 25 Infrastructure registration flow

Figure 25 shows the flow of an infrastructure registration (details on Deliverable 5.3). The registration process is started
by the operation addCloud, which is associated to a set of data (Json format), including the infrastructure(s) endpoint(s)
and credentials: part of this flow has been already described in Section 3.1.2, concerning the Deployment Environment
credential management (Figure 9). The security profiles of the Deployment Environments will be included among this
set of data and stored by the Executionware to identify the Node Candidates associated to the specific Deployment
Environment.

The Deployment Environment security parameters are the core of the security profile. They define the security level of
a Deployment Environment according to its characteristics in terms of hardware, operating system, network, access
control and security certifications. In general, the security profile is manually associated to the Deployment
Environment. In other terms, each Deployment Environment, from a big Cloud Provider (e.g., AWS) to a small node
provided directly by the user (BYON), must be associated to a specific security profile.

Security profiles are manually defined, since it is not possible to elicit it automatically from the Deployment
Environment. However, even if for a generic node the configuration should be fully manual, for the most widespread
Deployment Environments, especially cloud, default security profiles will be made available.

Some Deployment Environments allow to instantiate with specific security features; in this sense, the ProActive
Scheduler can instantiate those security features along with the nodes at deployment time if requested. This aspect is
exploited in MORPHEMIC by associating multiple security profiles, mapped on the advanced security features, to the
same Deployment Environment, as described in Section 4.3.

The security profile is a characteristic of the Deployment Environment and is associated to all the Node Candidates
coming from that deployment environment: it is composed by some security parameters. They have been selected to
have a thorough assessment of the security of a deployment node, be it a private or public Cloud infrastructure or any
other networked device or service, such as, for example, an IoT device. At this purpose, several aspects must be taken
into consideration: from the physical characteristics of the hardware involved to the software the runs over it, up to the
security practises adopted by the people managing it or even its physical location.

D4.2 Security design and implementation

Page 43

Table 5 Deployment Environment security parameters

Security Category Parameters

Authentication, Authorization,
Accounting

Authentication, Authorization, multi-tenancy/tenant segregation,
Access Logging

Hardware Level Security X86, AMD SEV/SME, Intel SGX, EFI, AR, ARM Trustzone, FPGA,
Bitstream Encryption, BootCodeAutentication, IoT

Network Level Security Network segregation (VLAN), IDS/IPS, Firewall/NAT, Reverse
Proxy, https everywhere, external/internal Vulnerability Assessment

OS-level security Cgroups, selinux, Spectre/Meltdown/(etc) patches, general sw
hardening, minimal OS images, event logging (+ centralized
collection)

Physical access Military grade premises vs self-hosted or publicly available

Security certification CSA certs, ISO 27001/GPDR

Storage-level security Data Encryption, Data Location

Looking at Table 5, the categories and parameters presented are used to answer several security related questions. Here
is a rundown of those questions, divided by category:

• Authentication, Authorization and Accounting (AAA): do users need to provide any means of identification in
order to interact with the infrastructure/service? Can they see or access objects or instances that are not their
own? Can they freely perform any action, or are they limited in scope depending on their privileges? Is any
action performed by users traced?

• Hardware-level Security: is the hardware involved exposed to know vulnerabilities? Can it be configured to
boot only Operative Systems that have been certified to run on that specific SKU? Can it segregate virtual
instances running on an hypervisor?

• Network-level Security: Is the incoming network traffic filtered in order to limit the attack surface? Is the
incoming web traffic managed in a centralised fashion? Is it encrypted? Are there any measures to limit/prevent
or misdirect any malicious traffic in place? If there are multiple internal networks, is the internal traffic separated
by the use of physical or virtual segregation? On the public-facing networks, what are the results of a
vulnerability assessment? Is it resilient to a multitude attacks that can debilitate the exposed services, such as
Denial of Service?

• OS-level Security: If there is an Operative System running on the physical or virtual device, does it include any
mean to avoid or contain privilege escalation? Can it segregate running processess? Does it exclude software
that is not required for its purpose in order to minimise the attack surface? Does it include software patches for
the most critical/well know vulnerabilities? Are user actions and software errors logged? Are the logs
centralised?

• Physical Access: How easily can the hardware be accessed? Is it hosted inside safely guarded premises or freely
accessible to the public? Security certifications, containing a list of the security certifications associated to the
DE provider

• Security certification: can the service provider offer any certification that proves that the offered services are
secure and/or private data is safely guarded and stored according to local/national/European laws?

• Storage-level Security: is the contained data freely accessible and readable or is it encrypted? Where is it
physically located?

D4.2 Security design and implementation

Page 44

As it can be expected, the more positive are the answers to these questions, the better the security level of the
infrastructure can be graded. However, it should be noted that, when evaluating the security grade of a deployment node,
not every parameter enumerated in Table 5 might be applicable. For example, a network of Edge devices could offer no
security certifications, performing a vulnerability assessment or a DDoS resilience evaluation of a Cloud provider
infrastructure might be forbidden by local laws or require a previous agreement with the provider itself, etc.

Even if it is desirable to have always a Deployment Environment with the best security level, the overall Utility should
depend also on other features matching the application requirements. An adequate solution in term of security can be
obtained by comparing the security features of the Deployment Environment with the security requirements of the
application. The security parameters shown in this section are used to express both: the matching process is shown in
Section 4.4.

4.3 Executionware: definition of the candidate nodes
The Executionware collects information about the available Node Candidates of the Deployment Environments. The
information consists of the node regions, images, hardware, and security profiles. Once the information is collected, the
Executionware will compile a list of available node candidates and store them in a Executionware Database.

The information regarding the node candidates is vital for the operation of the Upperware. Based on the list of available
nodes and on the application requirements, the Upperware decides which nodes out of the node candidates to be chosen
for the deployment of the application. As a result, the list of node candidates is provided to the Upperware using the
Executionware database and without the need of contacting the underlying infrastructure.

One of the approaches to evaluate the placement of the application is the security profile. The security profile is specific
to the infrastructure where the nodes are hosted and evaluated in terms of their security. For some Cloud providers, such
as AWS, a default security profile is provided while extra features can be added on demand like encryption and network
firewalls.

An example of the process is the following:

• an instance on AWS is created with security groups acting as a virtual firewall to control inbound and outbound
traffic

• by default, if the security groups rules are not listed, AWS will create instances that allow inbound traffic from
network interfaces (and their associated instances) that are assigned to the same security group, and outbound
traffic to all addresses, ports, and protocols

• the instance’s security can be boosted by using a white-list approach where only the ports and protocols used
by the applications are exposed.

From this example and from similar other examples, it can be remarked that the definition of a single security profile
representing the security level of the whole Deployment Environment is a limitation in many common use-cases. In
general, the security requirements vary according to the deployed instances.

MORPHEMIC helps on this implementing a hybrid approach: node candidates are evaluated according to a per-
environment security profile. However, during the deployment phase the ProActive’s Connector-IaaS supports the
extension with additional security features. Taking into account these features, it is possible build different security
profiles associated to a single infrastructure: for example, a default security profile for the default deployment and an
advanced security profile including the extra security features. In other terms, the Executionware apparently provides
different Node Candidates with different security profiles but with the other features identical: at deployment time, if a
non-default security profile is selected, the ProActive’s Connector-IaaS will extend the node with the advanced security
features.

4.4 Application security requirements and Deployment Environment security profile in
MORPHEMIC’s profiling, reasoning and adaptation tasks

One of the key objectives of MORPHEMIC is the ability to automate and optimise cross-cloud, polymorphic application
deployments. All the MORPHEMIC’s components use a common application model, based on CAMEL, which can be
seen as a superset of TOSCA23 standard of OASIS. The model itself is Cloud agnostic and not dedicated to any particular

23 https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca

D4.2 Security design and implementation

Page 45

cloud provider. The resulting application model is translated to a CP Model, providing a mathematical deployment
optimisation model for the application, also in a cloud agnostic way. The security level of a Candidate Node is defined
by its security profile, composed by the security parameters described in Section 4.2: they are, in most cases, inherited
from the infrastructure (security) profile. The application security requirements, instead, are the security features
requested by the application components and services to obtain an adequate deployment security level. The Node or
Deployment Environment security profile defines the environment’s constraint to be matched with the application
security requirements retrieved from the CAMEL model and its included utility function and then translated to CP
Models.

The pieces of information mentioned above are used in different tasks of the MORPHEMIC’s processing flow. In
particular, in the functionalities provided by MELODIC, i.e. the profiling, the reasoning, the adaptation and the
deployment.

The CAMEL Model is handled by the CP Generator and converted into CP Model in order to be used in the following
reasoning task. This first activity is performed by the CAMEL and CP Generator components:

 the CDO Client library is responsible for parsing CAMEL Model to a corresponding in-memory object model. The
security requirements will be available in the CAMEL model as annotated attributes of the respective entities (e.g.,
application components).

• the CP Generator based on the CAMEL model creates the CP model, used in the reasoning phase.It might
encode security-related requirements using security variables, mapping to node candidate security parameters,
for further reducing the solution space.

The reasoning task is the main functionality provided by the MELODIC component, since it is responsible for finding
optimal deployment solutions for the given application utility within given constraints. The key components involved
in the reasoning phase are:

• Metasolver, which chooses the right Solver for the specific deployment optimisation problem (I\i.e., the CP
model)

• the list of Solvers is described in detail in deliverable 3.3 (Optimization planning and adaptation approach);
Solvers, which will process the optimization problem that will include the application security requirements and
the Deployment Environments security profiles among the parameters

• Utility Generator, which is responsible for the calculation of the utility values of the proposed solutions. The
Utility Generator evaluates the Utility Function including security parameters. The Utility Function is defined
in the CAMEL model.

The adaptation task deals with the adaptation and orchestration of the deployment model to be deployed to the chosen
Deployment Environments. It is implemented in the Adapter, which prepares and orchestrates the deployment plans.

The Executionware is responsible for the deployment of the solution prepared by the Adapter to the chosen Deployment
Environments. This includes assuring that after each reconfiguration the connections among the components are
preserved.

The monitoring task collecting the measurements on the current execution context using an instance of Esper event
processing24 for gathering and aggregating the context metric values.

These latter tasks are focused on the deployment of the optimal solution found during the profiling and the reasoning
task.

The described processing and information flows do not impact neither on the high-level architecture of MORPHEMIC,
nor in the specific architecture of the MELODIC component. However, they require some modifications on the
components implementing the profiling and reasoning task, along with the modelling (if necessary, mainly at the
metadata/MDS level). The following components will be supporting security-based optimisation. However, they require
modification on some of the components implementing profiling and reasoning task (e.g. the CP Generator), along with
the modelling (if necessary, mainly at the metadata/MDS level):

24 https://www.espertech.com/esper/

D4.2 Security design and implementation

Page 46

1. the CAMEL Model will provide information on the security requirements of the application (using suitable
annotations coming from respective security-related elements of the MDS).

2. based on the CAMEL Model the CP Model for reasoning task is prepared, including security requirements and
preferences in the constraints and utility function, respectively

3. the CP Model is enriched with actual values of the metrics
4. the most suitable Solver for given CP model is chosen
5. the Solver solves the problem; each solution is evaluated by the Utility Generator via the Utility Function which

includes security requirements, as defined by user in step 1.
6. the best solution is passed to Adapter to be deployed.
7. the solution is deployed by Adapter using Executionware.
8. the monitoring task starts collecting the metrics of deployed solution
9. based on the metrics values the Metasolver could decide if the reconfiguration should be started
10. if reconfiguration is started then the Solver starts to look for the optimal solution, based on the new values of

collected metrics; as in the previous steps, for each found solution, the utility function value is evaluated to
define and compare the solutions; during the reconfiguration phase the security requirements will be handled in
the same way as in the initial deployment.

The above process allows to include the security parameters of the candidate nodes in the deployment and
reconfiguration processes of the MORPHEMIC pre-processor.

D4.2 Security design and implementation

Page 47

5 MORPHEMIC’s reused components: security analysis

The security level of a platform is given by its security-related components, such as Authentication and Authorization
systems, security services, such as IDSs, from the security features of its generic components and their vulnerabilities.

While the previous chapters focused on the Platform and Deployment Security, this chapter is dedicated to the
vulnerabilities of the inherited components. Each component must be integrated to the Platform Security system, as
described in Chapter 3, but this is not enough to limit the possibility of malicious attacks. It is possible that the generic
components present vulnerabilities opening attack points: this issue should be faced at design time (security by design
[5] [6]) or at development time. For the components inherited from other projects, this aspect is more critical, because
it should be assured that they are up-to-date, concerning the security and that they do not present specific vulnerabilities.
In particular for some EU projects, it is not guaranteed that the outcome present an adequate security level, and this
should at least be analysed, and, possibly, fixed before the integration in MORPHEMIC. To this end, a vulnerability
assessment is useful to discover and fix issues that could impact the sophisticated platform that will be the outcome of
the project. The vulnerability assessment aims at attaining a system hardening scheme with the potential use of different
techniques. In general, hardening is defined as the process of securing a system by reducing the attack surface, i.e., the
sum of the attack points which can be used by unauthorized users (attackers) to enter or extract data from the system.

Several components of MORPHEMIC are common with MELODIC: this includes the components providing
authentication and authorization functionalities. It is very important these components assure the highest level of
security, especially for their critical role also in the MORPHEMIC’s Security system. Section 5.1 is dedicated to the
components common with MELODIC.

The Web Crawler, as described in Deliverable D3.1 Software, tools, and repositories for code mining, is derived from
MARKOS EU Project25: in parallel to the modifications introduced and documented in that deliverable, a security
assessment has been performed in order to evaluate the needed improvements. Section 5.2 is dedicated to this topic.

The security assessment of MELODIC has been performed for integration reasons, but also to define the deployment
strategy on the new testbed infrastructure (WP5). Concerning the Web Crawler, the component, detached from
MARKOS context, presented some specific issues that should be analysed in detail.

Another integrated component is the ProActive Scheduler, which is a consolidated product that provides security
features like user and group management using Role-based access control (RBAC) and encrypted communication using
PAMR and PNPS. ProActive undergoes a continuous vulnerability assessment to maintain a high level of security. More
details about ProActive’s security features can be found on the specific documentation26. For the other components that
are being developed inside the MORPHEMIC project or in other parallel project or in other parallel projects: their
development process will be carried on guided by this deliverable and, more in general, according to the best security
practices.

5.1 Components of the MELODIC Platform: issues and potential solutions
The analysis of security features and limitations of the MEODIC platform was performed during the first year of the
MORPHEMIC project. It has been considered an important starting step to harvest the information needed to increase
the security level of the inherited components for the following implementation and integration phases.

The reference version of MELODIC was the 3.0, which was the most recent one in the first year of the MORPHEMIC
Project. The software architecture included a set of microservices running on Docker27 and opening a number of ports.
Specifically, the microservices presented the following features:

• thirty-two services exposing fifty-five network ports
• thirty-three network ports had to be publicly accessible for MELODIC to be functional.

Unfortunately, the aforementioned features present issues, since they extend the potential area of malicious attacks. The
reduction of the numbers of open ports, the enforcement of non-public intra-component traffic going exclusively through

25 https://cordis.europa.eu/article/id/117369-markos-global-integrated-and-searchable-opensource-software
26 https://doc.activeeon.com/
27 https://www.docker.com/

D4.2 Security design and implementation

Page 48

an internal network such as Docker’s and the introduction of a proxy in order to centralise and manage the incoming
web traffic are some of the objectives of the next releases of MELODIC, which will be used in MORPHEMIC.

The configuration of the services included in the platform is another critical point in terms of security. The analysis of
MELODIC identified the following issues:

• Cloudiator’s Web UI exposes the configured user string employed to authenticate with a Cloud Provider without
any authorization needed; this string includes the configured username and Tenant ID in case of an OpenStack-
based Cloud Provider

• most services are derived from stock images stored on a Docker repository, some of which come with either
default users or a publicly accessible wizard to create an administrative user at first login. Moreover, the
MELODIC official installation guide does not provide any indication about the services needing manual setup
after installation

• private data (e.g., the credentials used to access cloud providers) is locally logged in clear text by the discovery-
agent when authenticating with OpenStack-based cloud providers

• compatibility with SELinux - or similar software such as AppArmor - is not tested or documented in MELODIC;
SELinux helps mitigate the risk of privilege escalation when a service gets compromised

Since Cloudiator is not present inside the MELODIC version used by MORPHEMIC and Cloudiator’s role is taken by
the ProActive Scheduler, the security issues concerning Cloudiator are eliminated going forward with MORPHEMIC.

Concerning the other generic considerations, a more specific analysis has been performed once the testbed has been set-
up (Deliverable 5.6), and the first version of the MORPHEMIC core platform has been deployed. In particular, a
vulnerability assessment on the public-facing services has been produced by Engineering for internal consumption by
using OpenVAS28. OpenVAS is a leading free and open-source vulnerability assessment software suite aimed at offering
the toolset required to evaluate the vulnerability level of networked services. It automatically scans for vulnerabilities
and generates a detailed report containing the exploitable weaknesses found, while suggesting the appropriate mitigation
actions. The results of this assessment show that most of the identified issues related to the platform are due to the high
number of exposed services. The most significant suggestions provided by OpenVAS concern software updates or
configuration tweaking - Table 6 summarizes the actions that should be taken to address the identified issues.

28 https://www.openvas.org/

D4.2 Security design and implementation

Page 49

Table 6 Security issues and suggested actions found by OpenVAS on the MORPHEMIC core platform

Issue Suggested Action

Service “insecure by default configuration” Generate or ask for credentials during the deployment: if
this is not possible at that stage, include specific post-
installation actions in the installation manual

Security related post-installation procedures not executed
by default

Guarantee the execution of all the security related post
installation procedures

Service that does not preserve private information Make the service private or hide it through a reverse
proxy

Service logs in clear text username/passwords Modify the logging configurations

In general, one of the best security practices is the identification of which service must absolutely be exposed to cut
down the number of publicly exposed services. As mentioned above, thirty-three ports were opened in the version of
MELODIC that was analysed in Y1. As such, to reduce the potential security impact, a reverse proxy has been included
as part of the technological architecture of MORPHEMIC. The implementation of the reverse proxy component will be
added to the MORPHEMIC platform and all the incoming web traffic will be handled by this component.

Reverse proxies can act as a single access point toward multiple hosted services. Keeping a reverse proxy up-to-date
and patched and exposing only the bare minimum of ports – typically only common web traffic ports such as HTTPD
(80) and HTTPS (443) - renders the proxy itself secure and, by extension, helps improving the security of the services
behind it. The benefits introduced are multiple and provide a consistent uplift to MORPHEMIC security:

• having a single access point to access every exposed service, reducing the surface of attack exposed to malicious
entities. While this would introduce a single point of failure in the architecture, a future investigation on how to
leverage multiple reverse proxies behind one virtual IP could establish high availability at this level.

• possibility to enforce SSL encrypted network traffic on the public interfaces, increasing the security of data
flowing in and out of MORPHEMIC services

• possibility to offer an additional level of protection in certain security scenarios where a reverse proxy acts as
another level that needs to be penetrated before reaching the actual service backend, hence before an attacker
can gain access to the underlying services.

Due to its wide adoption and free and open-source nature, the choice of software to adopt for this role has fallen on
Apache Web Server29, a very powerful and flexible web server that can be configured to act as a reverse proxy by
leveraging its mod_proxy module. This software is extremely reliable and, as stated on the main page of the official web
site, Apache Web Server is ”the most popular web server on the Internet since April 1996”. However, it should be noted
that this is not a strict requirement, since other free and open-source software options that are capable of taking its place
are available, such as NGINX30.

Figure 26 summarises the proposed change in MORPHEMIC’s software architecture by leveraging an Apache reverse
proxy.

29 https://httpd.apache.org/
30 https://www.nginx.com/

D4.2 Security design and implementation

Page 50

Figure 26 Adding a Reverse Proxy

5.2 Web Crawler
The first release of the MORPHEMIC Web Crawler was included in MORPHEMIC 1.0. It is based on the outcome of
MARKOS, a project co-funded by EU FP7 programme. The MARKOS Web Crawler aimed at finding metadata on
open-source projects stored on public repositories (such as GitHub) to allow analysis on the projects’ licences. The
MORPHEMIC Web Crawler inherits a specific part of MARKOS’ components and adapts them to the MORPHEMIC’s
context and objectives. At the time of its development, within the context of MARKOS, its architecture was composed
of four python modules performing the following actions:

1. remote data fetching
2. data parsing
3. data integration according to a specific logic
4. generation and storage of “Description of a Project” (or DoaP31) objects, which contain each identified project

metadata

The second version of MORPHEMIC Web Crawler, in an advanced implementation stage at the time of writing this
Deliverable, will include only the first three modules, while the latter will be part of the Knowledge Base.

Due to the fact that the Web Crawler is an in-development component not yet fully integrated with MORPHEMIC, its
security has been analysed via a standalone instance. The following results will prove useful for the next releases of
both the Web Crawler and the Knowledge Base - and, by extension, of MORPHEMIC – since the suggestions to address
the identified issues have been already adopted and planned while such issues can match the security landscape of other
MORPHEMIC components.

The Web Crawler exposes only a single public endpoint which means that it offers a small attack surface to malicious
parties. Moreover, as it can be deducted from the installation process described in Deliverable 5.6, the Web Crawler
runs with an unprivileged account and supports SELinux, while the basic security procedures such as, for e.g., removing
guest access from MariaDB test tables, are enacted during its setup. Nonetheless, a number of security issues were
identified, such as:

31 https://github.com/ewilderj/doap

D4.2 Security design and implementation

Page 51

• the process (pserve) that publicly exposes the Web Crawler API does not support encryption nor authentication
out of the box and it is to be used for development only

• the Web Crawler depends on Python 2.7, which has been deprecated, while it requires a few older Python
libraries as well in order to execute properly

• some sensitive data, such as the username/password combination required to access the crawler database, is
stored in clear text inside the crawler configuration file.

 In order to improve the security of this software, the following changes have been implemented:

• the adoption of ElasticSearch, and the use of its API to query the data mined from the Web Crawler, has enabled:

o the removal of the insecure pserve web server

o the reuse of its A.A.A. facilities, configured to work in conjunction with the Login Client, thus offering
an authentication mechanism to limit the access to the Web Crawler/Knowledge Base API

While the following enhancements are planned to go forward:

• API endpoint access to be restricted to the Docker internal network, in order to limit it to intra-process
communication

• port the Web Crawler to Python 3.9 to increase its security and software support as well as replacing all legacy
libraries that are or will be unsupported going forward

• In order to protect sensitive configuration data such as username and password required by the Web Crawler to
access its database, implement a mechanism that either lets the crawler ask for the database password at start-
up or hash/encrypt the file containing the required authentication data and let the crawler decrypt it at boot. This
is comparable to how X11vnc32 deals with session passwords. The latter solution would make for a more
practical choice as it does not require user intervention. This would represent an improvement upon clear-text
username/password storage while maintaining the benefits of running the process under an unprivileged user:
in fact, if a service that runs as root is exploited, the whole system is compromised. Meanwhile, if the crawler
is exploited, the malicious user could gain access to its files and database, but he would still need to find a way
to elevate his privileges.

At time of writing this deliverable, the development of the Web Crawler is actively ongoing. The technical team of the
project is replacing the original prototype of the Knowledge Base, derived by MARKOS Crawler, with an ElasticSearch
based solution, while also increasing the exhibited security level by adopting the measures explained above. In fact, the
aforementioned suggestions have been included in the development plan of the Web Crawler and will be implemented
in the next releases.

32 https://github.com/LibVNC/x11vnc

D4.2 Security design and implementation

Page 52

6 Conclusions

Security in MORPHEMIC is intended in two different meanings: Platform Security (Chapter 3) and Deployment
Security (Chapter 4).

The Platform Security includes all the functionalities, services and mechanisms aimed at making the platform secure.
The Authentication and Authorization are the basic security services: they are derived from the corresponding services
of MELODIC. Concerning the Authentication, MORPHEMIC acts both as server and as client. MORPHEMIC is a
server for the User-Authentication (Section 3.1.1): it is based on username and password verified against identities
stored on an LDAP. A successful authentication produces a signed token that identifies each request inside the platform.
MORPHEMIC is a client with respect to the Authentication mechanisms of the Deployment Environments. In particular,
MORPHEMIC must log into the Deployment Environment that it has to manage: the ProActive Scheduler handles this
aspect supporting different authentication factors and providing a credential storage service.

The Authorization system is derived by MELODIC as well: however, even if it is similar concerning the operations and
the used protocols (ABAC and RBAC), in MORPHEMIC the technological architecture is simplified, since the whole
system is built on Balana XACML implementation. The Authorization system is classified in RBAC User-
Authorization, aimed at controlling the access to the services provided by the platform, and ABAC Deployment
Environment Pre-Authorization, aimed at controlling the accesses to the Deployment Environments.

The Access Logger has been introduced in MORPHEMIC: it records all the events relevant in terms of security. It is an
agent-based component that gets the records from the Authentication and the Authorization system and stores them.

The Platform Security aims at reducing the risk of potential attacks: however, another important issue is due to the
specific vulnerabilities of the components (Chapter 5). An analysis on the components common with MELODIC and
on MORPHEMIC’s Web Crawler has been performed and the results have been used to plan some platform/component
improvements to be introduced in the next MORPHEMIC platform releases.

The Deployment Security assures that the selected Deployment Environments and nodes present a security level
adequate to the requirements of the specific application. In MORPHEMIC this functionality is implemented by
introducing the security requirements in the CAMEL Model, Utility Function and Reasoning (Section 4.4) and filtering
the Deployment Environments and nodes (Section 4.3) according to a set of pre-defined security parameters (Section
4.2). The node selection problem will consider also the requested security level and the final result will optimize the
Utility Function taking into account also this aspect.

This deliverable provided a complete description of the security definitions adopted in MORPHEMIC and the
architecture to implement it. At the time of writing the document the implementation is still in progress: security is a
complex topic and should always be tuned according to the provided services and new potential risks. To this end, the
implementation will embrace the whole project period as component owners need to work on increasing the security
level of their components according to the guidelines given in this document. The future works in terms of security will
be mainly linked to the impacted components: their specific deliverables, especially the ones of WPs 1, 2, and 3 will
report the future works. The Deployment Security is the answer to some requirements raised by the use-cases: the
evaluation of how MORPHEMIC will meet these requirements is part of the work of WP 6 and will be documented by
Deliverable 6.5 (Validation Results).

Furthermore, the Deployment Security is one of the most interesting research results that came out from the first period
of the project. It was not planned at proposal time and has been defined thanks to the analysis of the requirements
provided by the use-cases: for this reason it is not covered by the current version of the Description of Actions. However,
in order to provide a guideline for the future extensions of MORPHEMIC, some tasks for the implementation of the
Deployment Security have been identified:

• implementation of the Deployment Environment security profiles
• extension of the Utility mechanism
• extension of the CAMEL Model in order to include manually defined security features: this is an optional step

to support some specific cases in which the implicit association of the security features (Section 2.3) is not
sufficient.

D4.2 Security design and implementation

Page 53

References
[1] Paweł Skrzypek, Yiannis, Verginadis, Ioannis Patiniotakis, and Christos Chalaris, ‘Melodic Deliverable 5.03

Security requirements & design’. [Online]. Available: https://melodic.cloud/wp-content/uploads/2020/03/D5.03-
Security-requirements-design.pdf

[2] M. Jones, J.Bradley, N.Sakimura, ‘RFC 7519’. Internet Engineering Task Force (IETF), 2015. [Online]. Available:
https://tools.ietf.org/html/rfc7519

[3] Y.Sheffer, D.Hardt, M.Jones, ‘RFC 8725’. Internet Engineering Task Force (IETF), 2020. [Online]. Available:
https://tools.ietf.org/html/rfc8725

[4] Chung Tong Hu, David F. Ferraiolo, David R. Kuhn, Adam Schnitzer, Kenneth Sandlin, Robert Miller, Karen
Scarfone, ‘Guide to Attribute Based Access Control (ABAC) Definition and Considerations’. NIST Special
Publication, Feb. 25, 2019. [Online]. Available: https://www.nist.gov/publications/guide-attribute-based-access-
control-abac-definition-and-considerations-1

[5] Chad R. Dougherty, K. S. Kirk, Robert Seacord, David Svoboda, and Kazuya Togashi, ‘Secure Design Patterns’,
2018, doi: https://doi.org/10.1184/R1/6583640.v1.

[6] Dan Bergh Johnsson and Daniel Sawano, Secure by Design. Manning.

