

Selection, design and
implementation of the integration

layer

Modelling and Orchestrating Heterogeneous
Resources and Polymorphic Applications for
Holistic Execution and Adaptation of Models
in the Cloud

Executive summary

One main factor for the successful design and implementation of
MORPHEMIC is to provide a proper integration and adaptation
strategy that integrates the platforms on which MORPHEMIC is
built, such as MELODIC and Activeeon’s ProActive Scheduler. This
includes not only the integration of components within the above
frameworks, but also the development of new components and
mechanisms in MORPHEMIC to handle the polymorphic and
proactive adaptation feature. The integration plan may lead to the
adaptation of components involved in an integration, which calls for a
proper adaptation strategy. In terms of the integration architecture, we
consider two layers of integration: a control plane and a monitoring
plane. The former is for the integration of actions in a control flow,
and the latter is for gathering, processing, propagating, and storing
monitoring events. From the viewpoint of integration models, we
investigate four popular integration strategies, including point-to-
point integration, Message Oriented Middleware (MOM) integration,
Enterprise Application Integration (EAI) or Enterprise Service Bus
(ESB) based integration, and EAI/ESB integration with Business
Process Management (BPM) orchestration. To evaluate these
integration strategies, a methodology is proposed for choosing the
integration and adaptation strategy.

H2020-ICT-2018-2020
Leadership in Enabling and Industrial
Technologies: Information and
Communication Technologies

Grant Agreement Number
871643

Duration
1 January 2020 –
31 December 2022

www.morphemic.cloud

Deliverable reference
D4.3

Date
30 June 2021

Responsible partner
7bulls

Editor(s)
Paweł Skrzypek

Reviewers
Alexandros Raikos, Nebil Ben Mabrouk

Distribution
Public

Availability
morphemic.cloud

Author(s)
Katarzyna Materka, Michał Semczuk, Paweł Skrzypek

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 871643

D4.3 Selection design and implementation of integration layer

Page 2

Table of Contents
1	 Introduction .. 4	

1.1	 Structure of the document .. 4	
1.2	 Intended Audience .. 5	
1.3	 Glossary .. 5	

2	 Integration methods in the MELODIC platform and Activeeon’s ProActive Scheduler .. 6	
2.1	 Integrating methods in MELODIC ... 6	
2.2	 Integrating Activeeon’s ProActive Scheduler .. 8	

3	 Selecting an integration and component adaptation strategy ... 9	
4	 Methodology Application .. 10	

4.1	 Requirements Collection .. 10	
4.2	 Integration Method Research and Review ... 12	

4.2.1	 Point-to-point integration ... 13	
4.2.2	 Message Oriented Middleware integration .. 14	
4.2.3	 EAI/ESB based integration .. 16	
4.2.4	 EAI/ESB integration with BPM orchestration ... 17	
4.2.5	 Overall Evaluation Results ... 19	
4.2.6	 Method Score Calculation .. 20	

4.3	 Integration Strategy selection determination .. 21	
4.3.1	 Expert Recommendation .. 21	
4.3.2	 Final selection of the integration strategy .. 21	

4.4	 MORPHEMIC platform adaptation strategy .. 22	
4.5	 ESB and BPM implementation ... 22	

4.5.1	 ESB implementation .. 22	
4.5.2	 BPM implementation ... 22	

5	 Integration and adaptation method for MORPHEMIC .. 23	
5.1	 Discussion on the selected integration method for MORPHEMIC ... 23	

6	 Summary .. 24	
7	 References .. 25	

D4.3 Selection design and implementation of integration layer

Page 3

List of Tables
Table 1: Specific terms used in the deliverable ... 5	
Table 2: The relation of integration requirements to the two planes ... 12	
Table 3: Fulfilment of integration requirements by the Point-to-point integration method .. 13	
Table 4 Fulfilment of integration requirements by the MOM based integration method .. 15	
Table 5: Fulfilment of integration requirements by the ESB based integration method ... 17	
Table 6: Fulfilment of integration requirements by the ESB based with BPM orchestration integration method 18	
Table 7: Summary of requirement fulfilment for all integration methods considered .. 19	
Table 8: Summary of the integration method evaluation .. 20	
Table 9: Calculation of the overall scores per plane .. 21	
Table 10: Choosing ESB implementation ... 22	
Table 11: Choosing BPM implementation .. 23	

List of Figures
Figure 1: MELODIC high-level architecture ... 7	
Figure 2: The architecture of the Activeeon’s ProActive Scheduler ... 8	
Figure 3: Diagram of methodology for choosing integration and adaptation strategy for the Morphemic project 10	
Figure 4: Point-to-point architecture ... 13	
Figure 5: Message Oriented Middleware architecture ... 15	
Figure 6: ESB based integration architecture .. 16	
Figure 7: ESB based integration with BPM orchestration ... 18	

D4.3 Selection design and implementation of integration layer

Page 4

1 Introduction

The right choice of integration strategy is crucial for the successful implementation of a given project, as there are
plenty of integration methods available, each having certain advantages and disadvantages. Applying an appropriate
methodology in order to select the best integration method for the given requirements of a system is quite a complex
task. As stated in [1], a properly chosen integration strategy could provide significant benefits for the usability of the
platform, in terms of stability, reliability, performance, as well as reduced development and maintenance costs.
The purpose of this deliverable is to evaluate different strategies for integration and adaptation (modify components of
underpinning frameworks), and to select the most efficient according to the objectives of the MORPHEMIC project.
The selected strategy will also be analysed in order to highlight its main benefits and advantages.
As baseline integration - for the further enhancements in MORPHEMIC - project is focused around the integration of
the underlying MELODIC1 (as stated in Description of Action) and Activeeon’s ProActive Scheduler2 frameworks
(based on the Consortium decision described and justified in deliverable D4.1[17]), a proper integration and
adaptation strategy is crucial for the success of the project.

• MELODIC is an open-source integrated platform to support both the design, optimization, and deployment of
cross-cloud applications. Together with an accompanying methodology, MELODIC supports model-based
configuration, optimization and adaptive deployment of these applications. MELODIC allows for deploying
existing and new applications independently of the existing underlying Cloud infrastructures.

• The Activeeon’s ProActive Scheduler is a Cloud service orchestration framework which allows for
deployment infrastructure and applications to the selected Cloud providers.

For the purpose of this document and to this end, the integration strategy defines a high-level plan for integrating
components of underlying projects along with a number of new components to be developed by the MORPHEMIC
consortium. The integration method, for the purpose of this document, is the detailed plan of integration, with a set of
tools and procedures. The adaptation strategy is closely interrelated to the integration strategy and defines a high-level
plan for modifying components of underlying projects, in order to be usable in the MORPHEMIC platform. In this
deliverable, the general adaptation strategy is presented, while details of the adaptation of integrated components
(presented as a list of changes to the underlying frameworks) are described in the D4.1 "Architecture of pre-processor
and proactive adaptation" deliverable.

1.1 Structure of the document
The rest of this deliverable is divided into four logical parts. In the first part of the document, the current integration
methods, as adopted in the MELODIC platform and Activeeon’s ProActive Scheduler, are analysed. The second part
of the document is dedicated to analysing the methodology for the selection of the right integration and adaptation
strategies for MORPHEMIC. The third part of the document explains how the aforementioned methodology has been
applied, and what are the results of the application of the methodology. It also explains the rationale for selecting the
respective integration and adaptation strategies for MORPHEMIC. Finally, the last document part elaborates more on
MORPHEMIC’s selected integration and (framework component) adaptation strategies.
The detailed structure of the document is as follows:

• Introduction – this chapter describes the main objectives and structure of this document.
• Integration methods in the MELODIC platform and Activeeon’s ProActive Scheduler (Chapter 2) – the

section contains a description of current integration methods used within the MELODIC and Activeeon’s
ProActive Scheduler projects.

• Selecting an integration and component adaptation strategy (Chapter 3) – description of the devised
methodology for deciding on the integration and adaptation strategies for MORPHEMIC.

• Methodology Application (Chapter 4) – detailed application of the methodology with the supply of respective
results, as well as the final selection of the integration and adaptation strategies for MORPHEMIC.

• Integration and adaptation method for MORPHEMIC (Chapter 5) – description of integration and adaptation
strategies for the MORPHEMIC project, selected based on the methodology application results, for both the
Control and the Monitor Planes, as presented in deliverable D4.1 "Architecture of pre-processor and proactive
adaptation".

• Summary (Chapter 6) – conclusions and next related steps.

1 https://melodic.cloud/
2 https://www.activeeon.com/products/workflows-scheduling/

D4.3 Selection design and implementation of integration layer

Page 5

The intended audience of this deliverable are primary the technical persons in the MORPHEMIC project responsible
for development and integration of the components. Also, the persons outside of the Consortium interested in
technical details of integration within advanced multi-cloud optimization platform are considered as audience for the
deliverable.

1.2 Intended Audience
The intended audience of this deliverable are primary the technical persons in the MORPHEMIC project responsible
for the development and integration of the project’s components. Also, persons outside of the Consortium interested in
technical details of integration within advanced multi-cloud optimization platform are considered as audience for the
deliverable.

1.3 Glossary
Table 1 Specific terms used in the deliverable

Terms used in deliverable Explanation of the term
High Availability (HA) High level of availability of an IT system or application. This usually means that

the system is installed in more than one instance.
Active – passive mode Mode of High Availability (HA) / multi-instance configuration where one

component's instance is active and handles requests while a second instance is up
and will start handling request in case of failure of the first instance

Active – active mode Mode of HA / multi-instance configuration where all component's instances are
up and running as well as handling requests

Business Process Management
(BPM)

A standard process for the management of business processes that is enabled
through the use of Workflow / Process Engines

Strategy A general plan to achieve one or more long-term or overall goals under
conditions of uncertainty.

Method Detailed approach or solution to achieve a goal
Integration strategy Set of guidelines, assumptions and general directives related to the integration of

components within a given IT system
Adaptation strategy Set of guidelines, assumptions and general directives related to adaptation of the

technology and the components in a given IT system. For the purpose of the
deliverable, as adaptation we understand alignment (change) of the components
from underpinning frameworks to the Morphemic platform

Integration Alternative: process of linking together different components or systems in order
to act as a coherent, coordinated whole

Adaptation Adjustment and changes of a given component or technology needed to fit it to a
particular IT system

Application Programming
Interface (API)

The definition of the interfaces of a system or application made available to be
invoked by external parties

Enterprise Service Bus (ESB) A method for integration of IT systems or components
Enterprise Application
Integration (EAI)

All tasks, activities, methods and tools used for integrating applications within an
enterprise

Simple Object Access Protocol
(SOAP)

A protocol for the integration of IT systems

Representational State
Transfer (REST)

A protocol for the integration of IT systems

Control Plane Integration layer responsible for handling control and data flow in the system
Monitoring Plane Integration layer responsible for handling all monitoring related events and

operations
MOM communication Communication between IT systems based on a queue of messages, usually

asynchronous
Synchronous communication Direct method of communication between IT systems, where the invoker is

blocked until it receives a corresponding response
Asynchronous communication Indirect (usually through a queue message broker) method of communication

between IT systems, where the invoker is not blocked until it receives the
respective response

D4.3 Selection design and implementation of integration layer

Page 6

2 Integration methods in the MELODIC platform and Activeeon’s ProActive

Scheduler

In this section, the current (as–is) state of the integration layer in the MELODIC and Activeeon’s ProActive Scheduler
projects is described.

2.1 Integrating methods in MELODIC
MELODIC integrates several underlying frameworks into one platform [14]. Different frameworks use different
integration methods, both in tools used and in communication types – synchronous versus asynchronous. The proper
selection of the integration architecture with MELODIC was a crucial point for the success of this project. An
additional element to consider was the level of effort needed to implement the chosen integration method. An
Enterprise Service Bus (ESB) with Business Process Management (BPM) orchestration was chosen as the most
flexible and easy method of integration. ESB is a common integration method used to integrate enterprise grade
systems. BPM is a standard for the description and execution of business processes. The integration layer of
MELODIC contains two planes:

• Control Plane – for business logic integration and controlling.
• Monitoring Plane – for monitoring related activities.

The key benefits of this approach are:

• Flexible logic implementation in the BPM flow with no hard coding.
• Support for both synchronous and asynchronous communication.
• Support for most of the integration protocols.
• Reliability, configuration easiness, and high availability.
• Ability to integrate with other enterprise applications due to the use of the ESB integration method.

The architecture of the MELODIC software platform is shown in Figure 1.

D4.3 Selection design and implementation of integration layer

Page 7

Figure 1 MELODIC high-level architecture

D4.3 Selection design and implementation of integration layer

Page 8

2.2 Integrating Activeeon’s ProActive Scheduler
The Proactive Scheduler is intended to replace the Executionware module in MELODIC. Executionware is
responsible for provision cloud infrastructure and deploying applications into the cloud. The rationale for that decision
alongside with the Cloudiator’s shortcomings are described in deliverable D4.1 [17].
The components of ProActive Scheduler are integrated into a microservice architecture. They interact through REST
API calls. ProActive agents are located on remote infrastructures. They interact with the Resource Manager using the
proprietary ProActive Network Protocol (PNP) and the ProActive Message Routing Protocol (PAMR). Both protocols
are used internally by ProActive Scheduler.
Figure 2 exposes an overview of the Community version of ProActive Scheduler. The user interfaces of the Scheduler
and the Resource Manager are included, but the workflow design interface (ProActive Studio) is omitted for the sake
of clarity. The enterprise version comes with additional components not used in the MORPHEMIC project, and
therefore not covered in this deliverable.

Figure 2 The architecture of the Activeeon’s ProActive Scheduler

D4.3 Selection design and implementation of integration layer

Page 9

3 Selecting an integration and component adaptation strategy

This section contains a description of the methodology for choosing the integration and adaptation strategy for
MORPHEMIC. The result of applying the described methodology is presented in Section 4.
For the selection of the most appropriate integration and adaptation strategy for the MORPHEMIC project, the
following methodology has been used. This methodology has been devised according to our experience and the
requirements (as presented in Section 4.1) that must be fulfilled:
1. The first step of the methodology is to identify the objectives and general requirements for the integration and

adaptation strategy of the project, as well as the purpose of the integration and alignment of the components. The
requirements are identified separately for the Control Plane, as well as the Monitoring Plane.

2. The second step is to research, review and evaluate typical integration methods used to integrate IT systems.
There are plenty of such methods but – based on professional experience and knowledge – the most typical and
suitable methods were chosen. This step is broken down into the following sub-steps:

a. A research over state-of-the-art integration methods is conducted. A small set of the most suitable
integration methods is then selected from the state-of-the-art.

b. Each of the integration methods considered is compared against the fulfilment of the integration
requirements for the MORPHEMIC project identified in the first step of the methodology. For each
requirement per each method of integration the level of fulfilment is assigned. The estimated effort needed
to implement a given integration strategy in MORPHEMIC project is also provided as a value in the range
1 ... 5, as explained in section 4. Lower values mean higher effort, so the scale is reversed. The reversed
scale is used for easier comparison in the next point. The effort is related to the current architecture of the
project; thus, the effort for the implementation of the already used integration method is minimal
(adjustments only).

c. After completing the previous step, a certain score is assigned to each method of integration. The score is
computed by a weighted sum approach: in the first level, we compute the overall method score from the
weighted sum of the scores calculated for each plane; in the second level, we apply a weighted sum of the
partial scores of requirement fulfilment and the level of effort in order to compute the method score per
each plane; in the third level, we calculate the requirement fulfilment partial score through dividing the
sum of the points of the actual fulfilment of the method across all requirements, with the sum of the
maximum points that a method can take over all requirements. The partial score of the level of effort is
computed by dividing the actual evaluation value of the method divided by the maximum possible one
(i.e., 5). For the evaluation of each integration requirement, we map the level of fulfilment of the
requirement into the range 0 ... 5. In particular, fulfilled requirement maps to 5 points, a partially fulfilled
one to 3 points and a non-fulfilled requirement to 0 points. The score for Control Plane has weight 0.6 and
the score for the Monitor Plane has weight 0.4. The Control Plane is considered more important for the
entire platform’s operation.
The calculation of the overall score for the methods is performed as follows:

• Partial_score_level_effort = actual effort needed for method implementation divided by the
maximum possible one (number 5).

• Partial_score_control_plane_req = sum of fully fulfilled requirements for the Control Plane
times 5 plus sum of partially fulfilled requirements for the Control Plane times 3.

• Partial_score_monitor_plane_req = sum of fulfilled requirements for the Monitor Plane
times 5 plus sum of partially fulfilled requirements for the Monitor Plane times 3.

• Overall score for the method = [(Partial_score_control_plane_req/65 * 0,75) +
 (Partial_score_level_effort * 0,25)] * 0,6 +
[(Partial_score_monitor_plane_req/15 * 0,75) +
 (Partial_score_level_effort * 0,25)] * 0,4

Please note that in order to apply the weighted sum approach, the respective partial scores have been
mapped to the same set of reals ([0.0, 1.0]), thus performing a certain form of normalisation.

d. The methods of integration are ranked from the highest to the lowest overall score.
3. In this step, the selection of the best integration strategy for the MORPHEMIC project is performed. This step

maps to the execution of the following two sub-steps:
a. Verify selected integration method by two certified architects based on their experience and professional

knowledge, to confirm the results of the quantitative assessment.
b. In case of a blocking issue, the method with the second highest score is selected to be verified by experts

and, thus, point 3.a. is repeated.

D4.3 Selection design and implementation of integration layer

Page 10

4. Based on the selected integration methods, the integration strategy for MORPHEMIC is determined.
5. Based on the chosen integration strategy, the adaptation strategy will be determined, as elaborated later in this

deliverable.

The final step is the selection of the right and most suitable tools to implement the selected integration method in the
MORPHEMIC project.

The above steps are summarised in Figure 3.

Figure 3 Diagram of methodology for choosing integration and adaptation strategy for the Morphemic project

4 Methodology Application

In the following sections, we elaborate on how the methodology analysed in the previous section is applied in the case
of the MORPHEMIC project. The methodology used to evaluate and select the integration layer for the
MORPHEMIC project is based on the approach described in [14][15]. The analysis is performed according to the
structure of the methodology of the previous chapter in a step-wise manner, where each step is analysed in its own
section.

4.1 Requirements Collection
One of the key activities of the work in the MORPHEMIC project is the integration and adaptation of the underlying
frameworks MELODIC and Activeeon’s ProActive Scheduler, followed by the introduction of the support for
proactive and polymorphic adaptation. For this reason, the integration and adaptation strategy for MORPHEMIC
should be carefully evaluated and precisely designed.
The fundamental objective of integration in MORPHEMIC is to achieve seamless cooperation between the
components, independently from their underlying frameworks. Such an approach is very important for this project due
to the use of different integration methods in the key underlying frameworks:

• The MELODIC platform consists of 16 components; these components are integrated using ESB
(synchronous) and ActiveMQ (asynchronous).

• Activeeon’s ProActive Scheduler, has also a certain component structure, but the features are exposed by one,
unified API. The components of Activeeon’s ProActive Scheduler are integrated via a REST API
(synchronous).

In the above projects, there are at least two different methods of integration used:
• Asynchronous, MOM communication (e.g., ActiveMQ used for metrics delivery)

D4.3 Selection design and implementation of integration layer

Page 11

• Synchronous, via a REST API3 (e.g., in case of the MELODIC Adapter's integration with Activeeon’s
ProActive Scheduler)

Furthermore, there are two separate layers of integration (both in MELODIC and MORPHEMIC platform), each with
its own purpose and requirements for integration:

• Control Plane – integration layer for controlling the flow of the process/actions in the system
• Monitoring Plane – integration layer for gathering, processing and storing all the monitoring events and

respective measurements.
This variety of used integration methods, planes and components – along with efforts to achieve the most efficient and
seamless integration of all components – has resulted in the creation of a unified method of integration.
The integration and adaptation requirements for each plane are listed below. These requirements are listed and
characterised by an ID which indicates, through its suffix, the actual plane on which the requirement is dedicated (CP
– Control Plane, MP – Monitor Plane, CMP – both planes).

The integration and adaptation requirements for the Control Plane are the following:

• Req1CP – Reliability: to achieve a reliable flow of the invoked operations, with full control over an
operation’s execution and returned results.

• Req2CMP – Performance: for the Control Plane, performance is not a critical issue, but the integration layer
should achieve a sufficient level of performance.

• Req3CP – Scalability: ability to scale the integration layer both horizontally and vertically.
• Req4CP – High availability: support for highly available, multi-node configuration, at least in active-passive

mode – active configuration will be an additional benefit.
• Req5CP – Flexible orchestration: the ability to easily set up and reconfigure the orchestration of method

invocations of underlying components. It should be possible to configure such orchestration without the need
to code and recompile the whole platform.

• Req6CP – Support for synchronous and asynchronous communication: the selected integration solution
should support both synchronous and asynchronous communication methods, with an easy way to switch from
one to the other.

• Req7CP – Security: support for both authentication and authorisation, as well as access control over offered
operations driven by security/access policies.

• Req8CP – Monitoring: the ability to monitor all operations invoked on the integration layer, with a
configurable level of detail.

• Req9CP – Logging: configurable and easy usage of a single logging mechanism for all the invoked
operations.

• Req10CP – Support for different integration protocols: the chosen solution should have support for the most
commonly used integration protocols; at least SOAP, REST and the Java Message Service (JMS)4.

• Req11CP – Data model transformation: ability to perform complex data model transformations.
• Req12CP – Exception handling and support for retrying: unified exception handling and retrying of

operations.
• Req14CMP – Easy to use: the integration method should be relatively simple as it needs to be executed for

every single Morphemic application.

The integration and adaptation requirements for the Monitoring Plane are the following:

• Req2CMP – Performance: due to the high volume of messages being exchanged, achieving high performance
is a crucial requirement.

• Req13MP – Low resource usage: The Monitoring Plane is used by all installed applications to properly
deliver metric values, so low usage of resources is very important (with respect to the components of that
plane).

• Req14CMP – Easy to use: the integration method should be relatively simple as it needs to be executed for
every single Morphemic application.

In Table 2 The relation of integration requirements to the two planes, we provide a summary of the requirements
collected along with their mapping to the respective planes of the MORPHEMIC platform.

3 http://searchcloudstorage.techtarget.com/definition/RESTful-API
4 https://www.techopedia.com/definition/4298/java-message-service-jms

D4.3 Selection design and implementation of integration layer

Page 12

Table 2 The relation of integration requirements to the two planes

Req. Id Requirement Which plane is affected by the requirement
(Control Flow, Monitoring, Both)

Req1CP Reliability Control Flow
Req2CMP Performance Both
Req3CP Scalability Control Flow
Req4CP High availability Control Flow
Req5CP Flexible orchestration Control Flow
Req6CP Support for synchronous and

asynchronous communication
Control Flow; for the Monitoring Plane only
asynchronous communication

Req7CP Security Control Flow
Req8CP Monitoring Control Flow
Req9CP Logging Control Flow
Req10CP Support for different integration protocols Control Flow
Req11CP Data model transformation Control Flow
Req12CP Exception handling and support for

retrying
Control Flow

Req13MP Low resource usage Monitoring
Req14CMP Easy to use Both

4.2 Integration Method Research and Review
In this section, we analyse the application of the 2nd methodology step concerning the research, review and evaluation
of integration methods. Our focus is on explaining why certain integration methods have been picked up from the
state-of-the-art, what they stand for and what are their main pros and cons, and finally how well they fulfil the
integration requirements collected based on the previous methodology step.
There are many definitions of the integration of IT systems. They can either use [2] and it can be also done with [3] or
by the most used [4]. For the purpose of this document, the following definition of integration will be used: the
interoperability between separate IT systems or components [2]. The purpose of the integration is to allow the
interoperability between components and systems according to the defined requirements. In the following subsections,
the most typical types of integration are described, along with a summary of their strengths and weaknesses.
For each type of integration method, the given method is compared to the requirements for integration. A given
requirement is first evaluated so as to determine its fulfilment. The possible levels of requirement fulfilment by a
particular method are discussed below:

• Fulfilled – a given requirement is completely fulfilled by the particular method, without a necessity to
implement custom code or to use any workaround. This maps to a quantitative score of 5 for the respective
method based on this requirement.

• Partially fulfilled – a given requirement is partially fulfilled by the particular method; there could be a need to
either implement custom code, to use a workaround, or to handle the requirement at the local level and, thus,
not at the integration level. The custom code or workaround does not need significant a effort to be
implemented, but it increases the complexity of the solution and it might have some negative impacts on
performance - but not a severe one. This maps to a quantitative score of 3 for the respective method based on
this requirement.

• Not fulfilled – a given requirement is not fulfilled by the particular method. Thus, there is no possibility to use
custom code or any workaround. The implementation of custom code or workaround may require significant
effort and increases complexity of the whole solution to an unacceptable level. It can also severely impact
performance in a quite negative way. This maps to a quantitative score of 0 for the respective method based
on this requirement.

In addition, for each integration method, the overall estimation of the complexity of implementation in the
MORPHEMIC project has been presented. In order to quantitatively compare the integration methods reviewed, we
use an indication of the implementation effort required using range values from 1 to 5 (1 for the highest effort and 5
for the lowest effort).
In the following subsections (4.2.1 to 4.2.4) we evaluate, by also providing respective justifications, the level of
fulfilment of integration requirements, and the level of complexity and needed effort, for each integration method. In
the end, an overview table is presented which summarises the evaluation results across all methods and requirements.

D4.3 Selection design and implementation of integration layer

Page 13

4.2.1 Point-to-point integration
Point-to-point integration is a direct connection between two systems, without any layer in between. The systems
usually are connected in a synchronous manner and there is no common data model transformation layer. The point-
to-point integration is the most expensive integration method [2] for medium and large number of components as well
as systems that need to be integrated. For a very small number of components and systems it could be acceptable, but
for a medium or large number of components and systems, the number of connections between systems increases
dramatically. A more detailed analysis of point-to-point communication is provided in [2].
In Figure 4, we present a typical, generic example of point-to-point integration of IT systems.

Figure 4 Point-to-point architecture

In Table 3, the evaluation of the point-to-point integration method is presented.

Table 3 Fulfilment of integration requirements by the Point-to-point integration method

Req.
Id

Requirement Fulfilment by
given
integration
method

Comments

Req1 Reliability Not fulfilled Reliability of all the integrated systems depends on the minimum
(individual) reliability across all the systems, e.g., a weak point of
one system impacts equally other integrated systems.

Req2 Performance Partially
fulfilled

Performance depends on the performance of each system and it
cannot be increased by scalability of the integration layer.
However, as the solution is simple enough, it is not penalised with
respect to its performance; that is the reason for partial fulfilment.
So, it is only limited by the performance of the respective sub-
systems involved.

Req3 Scalability Not fulfilled Due to point-to-point communication, there is no possibility to
scale the whole solution. Introduction of scalability needs custom

D4.3 Selection design and implementation of integration layer

Page 14

implementation, which is very difficult to maintain, requires
significant effort and is thus not recommended.

Req4 High availability Not fulfilled Due to point-to-point communication, there is no possibility to
create a complete HA solution; the process needs custom
implementation and configuration, but such a solution is very
difficult to maintain and extend. It also requires significant effort
to be introduced.

Req5 Flexible
orchestration

Not fulfilled It is not possible to use external orchestration in this case, due to
the lack of any external integration/orchestration layer.

Req6 Support for both
synchronous and
asynchronous
communication

Not fulfilled There is no built-in support for both types of communication; the
support needs to be custom implemented, which is very difficult to
maintain and extend.

Req7 Security Not fulfilled Implemented at each interaction point between systems; there is no
centralised security control and maintenance; a huge effort will be
required to implement it sufficiently and properly.

Req8 Monitoring Partially
fulfilled

Monitoring is established at each of the integrated system's level.
There is no centralized solution, which means that again a great
effort will be required to implement it.

Req9 Logging Partially
fulfilled

Logging is supported at each of the integrated system's level.
There is no centralised solution, which means that again a great
effort will be required to implement it.

Req10 Support for
different
integration
protocols

Not fulfilled Each of the integration protocols needs to be realised at each
integration level of the overall system.

Req11 Data model
transformation

Not fulfilled There is no common (domain-specific) data model and ability to
transform data models in a unified manner.

Req12 Exception
handling and
support for
retrying

Partially
fulfilled

Handled at the level of each integrated system.

Req13 Low resource
usage

Fulfilled Resource usage is low due to the lack of a separate integration
layer in this case.

Req14 Easy to use Fulfilled No additional work is needed for integration, except from invoking
methods of the other system. In case of many systems, the
complexity of the solution(s) is very difficult to maintain.

The estimated effort level needed to implement this method for the MORPHEMIC project is 3. The estimated effort
level is based on the complexity of the integration method, as well as the scope of changes needed for introducing the
method for the MELODIC and Activeeon’s ProActive Scheduler frameworks based on related expertise.

4.2.2 Message Oriented Middleware integration
Message Oriented Middleware (MOM) use messages transported in a queue as a means of communication. The
message queuing model allows messages to be stored in a queue where they may be picked up by an application at any
time. Thanks to that, the communication is partially reliable (with MOM broker as single point of failure), but the only
supported method of communication is asynchronous communication. A more detailed analysis of MOM, also known
as message-oriented middleware, is provided in [4].
In Figure 5, we present a typical MOM integration of IT systems.

D4.3 Selection design and implementation of integration layer

Page 15

Figure 5 Message Oriented Middleware architecture

The estimated effort needed to implement this method for the MORPHEMIC project is 4, as it is already partially
implemented for MELODIC.

Table 4 shows the level of fulfilment of the most desired requirements.

Table 4 Fulfilment of integration requirements by the MOM based integration method

Req.
Id

Requirement Fulfilment by
given integration
method

Comments

Req1 Reliability Partially fulfilled MOM, due to have one central point, is not fully reliable.
Req2 Performance Fulfilled Performance is high due to asynchronous communication and

efficient method of communication.
Req3 Scalability Partially fulfilled Due to having one central point the scalability is limited.
Req4 High availability Partially Fulfilled Due to one central point the proper HA configuration set up

is more difficult to be implemented.
Req5 Flexible

orchestration
Not fulfilled It is not possible to use external orchestration in this case due

to asynchronous communication.
Req6 Support for

both synchronous
and asynchronous
communication

Not fulfilled This method of integration, by design, supports only
asynchronous communication. There is no built-in support
for synchronous communication; the support needs to be
custom implemented, which is very difficult to maintain and
extend.

Req7 Security Fulfilled Implemented at the integration level.
Req8 Monitoring Partially fulfilled Monitoring is usually limited only to messages flow

monitoring. More advanced monitoring needs some custom
implementation.

Req9 Logging Partially fulfilled Centralized logging needs some custom implementation.
Req10 Support for

different
integration

Not fulfilled Supports by design only asynchronous integration protocols.
The requirement is not fulfilled, because the whole area of
synchronous methods of communications and protocols is not

D4.3 Selection design and implementation of integration layer

Page 16

protocols covered.
Req11 Data model

transformation
Not fulfilled MOM does not support this at all. It is very difficult to

implement full canonical model transformation with only a
queue-based solution, as it usually requires additional
layers/solutions.

Req12 Exception handling
and support for
retrying

Partially fulfilled Supported for asynchronous communication.

Req13 Low resource
usage

Fulfilled MOM has low resource requirements.

Req14 Easy to use Fulfilled There are common patterns on how to use this type of
integration. Installation and maintenance is also quite easy to
set up and administer.

4.2.3 EAI/ESB based integration
The Enterprise Service Bus5 architecture uses a central messaging backbone (bus) for message propagation. Systems
publish messages to this bus using adapters. These messages flow to any subscribing application that uses the same
message bus. These subscribing applications should have adapters in order to receive messages from the bus, and
transform them into the format required by them [5]. A more detailed elaboration and research related to the
integration approach using EAI/ESB could be found in6 [6]. A typical ESB solution implements support for both
synchronous and asynchronous communication. Asynchronous communication is usually implemented using a MOM
(for example, MuleESB default broker uses ActiveMQ for asynchronous communication).

In Figure 6 we present a typical EAI/ESB integration of an IT system.

Figure 6 ESB based integration architecture

In Table 5 the evaluation of the ESB integration method is presented.

5 http://searchdatacenter.techtarget.com/definition/high-availability
6 https://www.techopedia.com/definition/1506/enterprise-application-integration-eai

D4.3 Selection design and implementation of integration layer

Page 17

Table 5 Fulfilment of integration requirements by the ESB based integration method

Req.
Id

Requirement Fulfilment by
given integration
method

Comments

Req1 Reliability Fulfilled This type of integration is designed to be highly reliable due to the
ability to set up a multiple node installation.

Req2 Performance Fulfilled Performance depends on the complexity of integration logic, but
this requirement is fulfilled, since there is a possibility to build a
scalable solution.

Req3 Scalability Fulfilled Most of the ESB implementations have the ability to scale both
horizontally and vertically.

Req4 High
availability

Fulfilled Most of the ESB implementations have the ability to be set up in
HA configuration, where there is support for both active-passive
and active-active modes.

Req5 Flexible
orchestration

Not fulfilled It is not possible to use flexible orchestration with ESB only. It
requires external tools; this is covered as a separate integration
method (ESB with BPM orchestration, see next section).

Req6 Support for
both
synchronous
and
asynchronous
communication

Fulfilled Most of the ESB implementations have support for both methods
of communication.

Req7 Security Fulfilled Most of the ESB implementations have support for centralized
security management.

Req8 Monitoring Fulfilled Most of the ESB implementations have support for centralized
monitoring.

Req9 Logging Fulfilled Most of the ESB implementations have support for centralized
logging.

Req10 Support for
different
integration
protocols

Fulfilled Support for different integration protocols is a fundamental
assumption for each ESB solution.

Req11 Data model
transformation

Partially fulfilled Supported with some limitations like lack of object type entities
transformation [4].

Req12 Exception
handling and
support for
retrying

Partially fulfilled Most of the ESB implementations have support for exception
handling and retrying. Nevertheless, it is not possible to handle
exceptions and retrying at the business logic level.

Req13 Low resource
usage

Partially fulfilled The resource usage depends on the complexity of the integration
logic, but it is usually higher than simpler solutions.

Req14 Easy to use Partially fulfilled The integration of a new system/component with ESB is very
easy. The configuration and administration of an ESB requires
more effort, but usually is supported by dedicated tools built in the
platform.

The estimated effort needed to implement this method for the MORPHEMIC project is 4, as it is partially
implemented in the MELODIC platform.

4.2.4 EAI/ESB integration with BPM orchestration
EAI/ESB integration with Business Process Management7 (BPM) orchestration is the most flexible integration method
currently used for systems integration, based on the features being provided. This type of integration is similar to

7 http://searchcio.techtarget.com/definition/business-process-management

D4.3 Selection design and implementation of integration layer

Page 18

EAI/ESB integration. The only difference is that business processes (BPs) are used for orchestrating method
invocations, instead of coding this orchestration in each particular component. Based on this fact, it is much more
flexible to change the flow of the process, and it is possible to use the same service exposed by a given component in
various processes and features of the system. A more detailed elaboration and research for using BPM to orchestrate
service invocations is provided in [1].

A typical EAI/ESB integration with BPM orchestration is presented in Figure 7.

Figure 7 ESB based integration with BPM orchestration

In Table 6 the evaluation of the ESB with BPM integration method is presented.

Table 6 Fulfilment of integration requirements by the ESB based with BPM orchestration integration method

Req.
Id

Requirement Fulfilment by given
integration method

Comments

Req1 Reliability Fulfilled This type of integration is designed to be highly reliable.
Req2 Performance Fulfilled Performance depends on the complexity of the integration

logic, but based on the ability to build a scalable solution,
the performance requirement is fulfilled.

Req3 Scalability Fulfilled Most of the ESB implementations have the ability to scale
both horizontally and vertically.

Req4 High availability Fulfilled Most of the ESB implementations have the ability to be set
up in HA configuration, where both active-passive and
active-active modes are supported.

Req5 Flexible
orchestration

Fulfilled For this type of integration method, flexibility of
orchestration is achieved by introducing BPM flows for

D4.3 Selection design and implementation of integration layer

Page 19

orchestration.
Req6 Support for both

synchronous and
asynchronous
communication

Fulfilled Most of the ESB implementations have support for both
methods of communication.

Req7 Security Fulfilled Most of the ESB implementations have support for
centralized security management.

Req8 Monitoring Fulfilled Most of the ESB implementations have support for
centralized monitoring.

Req9 Logging Fulfilled Most of the ESB implementations have support for
centralized logging.

Req10 Support for
different integration
protocols

Fulfilled Support for different integration protocols is a fundamental
assumption for each ESB solution.

Req11 Data model
transformation

Fulfilled Fully supported ability to configure mapping between data
models (domain and canonical) at the ESB level.

Req12 Exception handling
and support for
retrying

Fulfilled Most of the ESB implementations have support for
exception handling and retrying. It is also possible to
handle exceptions and retrying at the business logic level.

Req13 Low resource usage Partially fulfilled The resource usage depends on the complexity of the
integration logic and usually is higher than for simpler
solutions.

Req14 Easy to use Partially fulfilled The integration of new systems/components with ESB is
very easy. The configuration and administration of ESB
requires more effort, but is usually supported by dedicated
tools built in the platform.

The estimated effort needed to implement this method for the MORPHEMIC project is 5, as this method is actually
used by MELODIC project, as well as supported by Activeeon’s ProActive Scheduler. The communication between
MELODIC and Activeeon’s ProActive Scheduler is done using REST protocol. End points can be defined in unified
way in the ESB, including security, logging and monitoring of these end points.

4.2.5 Overall Evaluation Results
Table 7 summarises the evaluation results for the integration methods examined across all integration requirements.
We assume that the level of fulfilment has a greater relative importance than the level of effort. This maps to assigning
a weight of 0.75 to the level of fulfilment and 0.25 to the level of effort. In this respect, the overall score per plane and
integration method is calculated according to the following formula: scoreij=0.75*reqij+0.25*effortij,, where scoreij
denotes the score of the method i over the plane j, while reqij and effortij denote the respective partial scores for the
level of requirement fulfilment and effort, respectively, for the current method and plane pair.

Table 7 Summary of requirement fulfilment for all integration methods considered

Req. Id Requirement/Integration method Point-to-
point

Queue
based

ESB ESB with BPM

Req1 Reliability Not fulfilled Partially
fulfilled

Fulfilled Fulfilled

Req2 Performance Partially
fulfilled

Fulfilled Fulfilled Fulfilled

Req3 Scalability Not fulfilled Partially
fulfilled

Fulfilled Fulfilled

Req4 High availability Not fulfilled Partially
fulfilled

Fulfilled Fulfilled

Req5 Flexible orchestration Not fulfilled Not fulfilled Not fulfilled Fulfilled
Req6 Support for both synchronous and

asynchronous communication
Not fulfilled Not fulfilled Fulfilled Fulfilled

Req7 Security Not fulfilled Fulfilled Fulfilled Fulfilled

D4.3 Selection design and implementation of integration layer

Page 20

Req8 Monitoring Partially

fulfilled
Partially
fulfilled

Fulfilled Fulfilled

Req9 Logging Partially
fulfilled

Partially
fulfilled

Fulfilled Fulfilled

Req10 Support for different integration
protocols

Not fulfilled Not fulfilled Fulfilled Fulfilled

Req11 Data model transformation Not fulfilled Not fulfilled Partially
fulfilled

Fulfilled

Req12 Exception handling and support for
retrying

Partially
fulfilled

Partially
fulfilled

Partially
fulfilled

Fulfilled

Req13 Low resource usage Fulfilled Fulfilled Partially
fulfilled

Partially
fulfilled

Req14 Easy to use Fulfilled Fulfilled Partially
fulfilled

Partially
fulfilled

4.2.6 Method Score Calculation
This is the second sub-step of the integration method research, review, and evaluation step, where the calculation of
the overall score of each integration method per plane is provided. Before supplying an explanation about how the
scores were calculated, we provide a summary in Table 8, which shows the mapping of the fulfilment level of each
requirement per each method to the 0 ... 5 range. In addition, an overall number of points per plane is calculated in the
very last rows of the table (along with an indication about what should have been the ideal number of points per plane
in parenthesis).

Table 8 Summary of the integration method evaluation

Req.
Id

Requirement name \
Integration method

Point-to-point Queue based ESB ESB with BPM

Req1 Reliability 0 3 5 5
Req2 Performance 3 5 5 5
Req3 Scalability 0 3 5 5
Req4 High availability 0 3 5 5
Req5 Flexible orchestration 0 0 0 5
Req6 Support for both synchronous

and asynchronous
communication

0 0 5 5

Req7 Security 0 5 5 5
Req8 Monitoring 3 3 5 5
Req9 Logging 3 3 5 5
Req10 Support for different integration

protocols
0 0 5 5

Req11 Data model transformation 0 0 3 5
Req12 Exception handling and support

for retrying
3 3 3 5

Req13 Low resource usage 5 5 3 3
Req14 Easy to use 5 5 3 3
 Estimated effort 3 (/5) 4 (/5) 4 (/5) 5 (/5)
 SUM OF POINTS for Control

Plane
17 (/65) 33 (/65) 54 (/65) 63 (/65)

 SUM OF POINTS for
Monitoring Plane

13 (/15) 15 (/15) 13 (/15) 13 (/15)

In Table 9, we present the calculation of the overall scores per plane (covering the 2nd level). The respective results
are imprinted in the table. Finally, the Overall Score for each method is calculated, based on the scores for the Control
Plane and the Monitoring Plane, with weights 0.6 and 0.4, respectively. A slightly higher weight is assigned to the
Control Plane, due to the greater importance of this plane for the whole solution.

D4.3 Selection design and implementation of integration layer

Page 21

Table 9 Calculation of the overall scores per plane

Integration
Method

Partial
score for
required
effort.

Partial score
for the
requirement
fulfilment level
for the Control
Plane

Overall
Score
for the
Control
Plane

Partial score for
the requirement
fulfilment level
for Monitoring
Plane

Overall
Score for the
Monitoring
Plane

Overall Score for all the
planes (0.6 weight for
the Control Plane and
0.4 for the Monitoring
Plane

Point-to-Point 3/5=0.6 17/65 = 0.26 0.34 13/15=0.86 0.8 0.52
Queue-based 4/5=0.8 33/65=0.50 0.58 15/15=1.0 0.95 0.73
ESB 4/5=0.8 54/65=0.86 0.85 13/15=0.86 0.85 0.86
ESB+BPM 5/5=1 63/65=0.96 0.97 13/15=0.86 0.9 0.94

Based on the results in the above table, we nominate ESB+BPM as the best integration method for the combined
Control Plane and Monitoring Plane, as well as individually for the first plane. The Queue-based method is ranked as
the best for the Monitoring Plane individually.
Using one integration method is the most preferred approach, due to less effort for implementation and maintainability
of the system in the future. Also, it is a less complex and error prone approach. To achieve uniformity of integration
method for each plane, the ESB+BPM is then selected as an integration method for MORPHEMIC. To confirm this
selection, two experts have been asked for verification of the choice made, as further detailed in the next section.

4.3 Integration Strategy selection determination
Based on the results of the previous methodology step, the selected integration strategy is to be verified by experts.
Thus, the goal of this methodology step is to confirm the chosen option. To this end, the professional opinion from
two certified software architects, one being a Certified TOGAF Architect with specialization in enterprise grade
solutions and the second being an AWS Certified Solution Architect with specialization in cloud solutions, was
initially requested and then considered in order to reach the final verdict, i.e., to make the final choice over the ranked
list of integration methods. In this respect, this section is separated into two subsections: the first indicates the opinion
received from the two experts, while the second analyses the final decision taken.

4.3.1 Expert Recommendation

4.3.1.1 TOGAF Architect recommendation

Based on the requirements of the MORPHEMIC system, especially the focus on providing a highly customized
solution, which could be exploited by use case applications, the first expert recommends the usage of ESB as an
integration method. Such a choice will make possible the creation of a highly scalable and reliable solution, which
could be extended in the future, according to new user requirements and business needs. Using BPM for service
orchestration allows to create a very flexible solution, which will minimize the cost of future changes and the
integration effort for incorporating new components and systems as well as the overall total cost of ownership. The
ESB/BPM combination is currently widely used for newly designed systems in the financial, insurance, telecom and
other industries, as the most innovative and flexible way of system integration.
4.3.1.2 AWS Architect recommendation

The MORPHEMIC system, as a multi-cloud platform, should be aligned with the architecture of typical cloud
computing applications, by relying on an as flexible as possible solution that can be easily adapted for the cloud.
Point-to-point integration is the oldest method of integration, completely not applicable to Cloud Computing due to its
lack of flexibility. The chosen integration method should natively support the REST API over the HTTP protocol, as
the mostly used solution for Cloud Computing applications. So, only ESB and ESB with BPM are the applicable
methods of integration for that kind of solution. As such, the ESB with BPM is recommended as the most flexible
method from the two.

4.3.2 Final selection of the integration strategy
Based on the results of the evaluation of each integration method against the integration requirements of the
MORPHEMIC project, along with the professional recommendations by two certified architects, the ESB with BPM
orchestration method of integration was selected as the integration strategy. This method achieved the highest ranking
for fulfilment of requirements and enjoyed two positive professional recommendations.

D4.3 Selection design and implementation of integration layer

Page 22

4.4 MORPHEMIC platform adaptation strategy
The adaptation strategy is derived and closely linked with the integration strategy. Based on the selected integration
strategy, the adaptation strategy for MORPHEMIC will be the following:

• All the components will be integrated based on the decided integration strategy and method.
• The structure of the repositories will be aligned and described in the Confluence (as technical documentation

of the project) of the MORPHEMIC project8.
• The unit and integration tests for each of the components should be prepared as described in the D4.4 "Test

Strategy" deliverable.
The initial architecture of MORPHEMIC as described in D4.1 "Architecture of pre-processor and proactive
adaptation" deliverables, respectively, will be respected by both the integration and adaptation strategies, and will be
used as a baseline for any adaptation and modification performed.

4.5 ESB and BPM implementation
Based on the chosen integration strategy for MORPHEMIC, ESB integration with BPM, the following subsections
focus on evaluating possible ESB and BPM implementations, which could be used in the MORPHEMIC project.
Due to the licensing model of the MORPHEMIC project, i.e., open-source licensing, only open-source solutions have
been evaluated as possible implementations for both ESB and BPM.

4.5.1 ESB implementation
For the ESB implementation, three possible open-source solutions have been evaluated:

• ServiceMix9 – based on review and previous experience, it is a high performance and available integration
solution, being the most mature and stable one [16].

• MuleESB10 – based on review and previous experience, as well as actual exploitation in the MELODIC
platform, it is the most innovative solution, especially in the Cloud computing area, with an easy-to-use
Graphical User Interface (GUI) and possible, additionally paid support from MuleSoft [16].

• WSO211 ESB – an open-source, dynamically developed integration solution, supported by the WSO2
technology provider.

The second and third solutions have also enterprise versions, which are not open source. After carefully evaluating
each option, summarised in Table 10, MuleESB has been chosen as the most suitable ESB implementation for the
MORPHEMIC project as:

• It is actually used in MELODIC framework.
• It is a stable and reliable solution, supported by MuleSoft, with plenty of documentation and online courses.
• It supports the Cloud computing model.
• It supplies a rich and easy User Interface (UI) for configuration and management.
• It makes available pre-implemented integration patterns.

Table 10 Choosing ESB implementation

Criterium ServiceMix MuleESB WSO2 ESB
Stable and reliable solution Yes Yes Yes
Cloud computing support No Yes Yes
Easy UI No Yes No
Support of different integration patterns No Yes Yes

4.5.2 BPM implementation
For the BPM implementation, there are four possible solutions that have been evaluated:

• Activiti12 – one of the oldest and most mature open-source BPM implementations
• jBPM13 – also, a mature and stable BPM implementation, developed by JBoss14, with integration support for

the business rule server Drools15

8 https://confluence.7bulls.eu/display/MEL/Morphemic
9 http://servicemix.apache.org/docs/5.x/user/what-is-smx4.html
10 https://www.mulesoft.com/resources/esb/what-mule-esb
11 http://wso2.com/
12 https://www.activiti.org/about

D4.3 Selection design and implementation of integration layer

Page 23

• Camunda – a mature and more robust implementation of BPM, which does not require the whole JBoss stack
to work.

• Flowable16 – the newest solution, developed by a team of former Activiti developers.

On a first look, Activiti looked like the most promising solution. However, after evaluation and verification of the
development roadmap and taking into account the fact that the Activiti development team has been split (the core of
the development team migrated to the Flowable project), Camunda has been chosen as the BPM implementation for
the MORPHEMIC project. The Flowable project is not fully mature for now, so it cannot accomplish the requirements
of the MORPHEMIC Project. The jBPM from JBoss requires the whole stack of the JBoss technology, which
complicates the implementation of the project and increases the resource footprint of the platform. Key advantages of
choosing Camunda are as follows:

• It is actually used in the MELODIC platform.
• Lightweight implementation which is easy to deploy and maintain.
• Full support for the REST communication protocol.
• Easily available docker images, which allow for fast deployment.
• Low level of dependencies to other projects, which allows for easier upgrades and maintainability in the

future.

Table 11 highlights the superiority of Camunda based on the 4 aforementioned criteria.

Table 11 Choosing BPM implementation

Criterium Activity jBPM Camunda Flowable
Easy maintenance and deployment Yes No Yes Yes
REST support Yes Yes Yes Yes
Docker images availability No Yes Yes No
Easy upgrade and maintainability No No Yes No

5 Integration and adaptation method for MORPHEMIC

This section contains detailed information about the Control Plane. Included are:
• The suggested construction of the processes and flows,
• Rules for services invocation and ESB exposition.

The Monitoring Plane, due to simpler integration design do not require presenting additional detailed information.

5.1 Discussion on the selected integration method for MORPHEMIC
Due to the architecture and the characteristics of the MORPHEMIC project, especially the two different types of flows
and planes, and after the careful evaluation presented in Section 4, an integration solution based on ESB/BPM has
been chosen. The chosen implementation of the ESB/BPM, MuleESB, includes ActiveMQ, a MOM integration
solution, which will be re-used for the Monitoring Plane.
The orchestration of the data and the action flows within the system will be modelled as processes in an appropriate
BPM language BPL (Business Process Language - BPL)17, i.e., the one supported by the BPM solution selected as
described in Section 4. The Integration layer based on ESB/BPM will allow reliable and monitorable method
invocations. It will also support reusability of the methods exposed by underlying components and avoid any point-to-
point communication.
The advantage of using Enterprise Service Bus MuleESB, which is an enterprise grade solution, is the ability to
achieve a high level of scalability and availability. MuleESB could be installed in a multi-node configuration,
supporting the active-active HA mode (see Glossary in Section 1.3).

13 https://bpm.com/what-is-bpm
14 https://www.techopedia.com/definition/3525/jboss-application-server-jboss-as
15 https://www.drools.org/
16 http://www.flowable.org/
17 https://www.btm-forum.org/boks/wikis/uam/UAM/guidances/supportingmaterials/uam_bpl_simple_858E0AEB.html

D4.3 Selection design and implementation of integration layer

Page 24

For example, a typical pattern and best practice is to use a control process, which will handle the events that must
trigger any action or sub-process on the system. Then, based on the event type and the current state of the system, one
or more dedicated processes will be executed. Examples of dedicated processes include:

• Deployment process – a process responsible for orchestrating the deployment of a new application, from the
upload of the user's CAMEL model until the final application deployment in the Cloud.

• Un-deployment process – a process responsible for un-deploying the user application from the cloud.
• Reconfiguration of the application based on a new solution generated by the solvers – this process will handle

all events generated by the system components to address properly the application reconfiguration.
The above list is not exhaustive, and new processes could be implemented according to the user requirements and
preferences. The services provided by underlying components will be exposed on the ESB and could be used (and re-
used) from any process. Based on this, most of the changes in scope could be handled simply by reconfiguring the
process flow (or implementing a new flow) instead of performing changes in the system code. This integration-
oriented architecture part introduces an abstraction layer between business flow and domain systems.

6 Summary

This deliverable addresses the core issue of integration and adaptation of the underlying MELODIC and Activeeon’s
ProActive Scheduler frameworks to set up the MORPHEMIC platform. The Activeeon’s ProActive Scheduler will
replace MELODIC Exectionware and will not be a part of the global integrated solution. As for previous
Executionware module the communication between MELODIC Upperware and Activeeon’s ProActive Scheduler will
be done through the REST protocol. The status of execution of the operations in Activeeon’s ProActive Scheduler will
be returned to MELODIC Upperware and available in BPM process. An appropriate integration and adaptation
strategy is crucial for the success of the project, allowing end-to-end Cloud service automation. To this end, the
MORPHEMIC project has to achieve the seamless cooperation between the various needed components of the two
adopted frameworks. Detailed list of the reused and adapted components is presented in deliverable D4.1
“Architecture of pre-processor and proactive adaptation”.
Architecting such integrated solutions is a complex task. There are many conflicting drivers and many possible "right"
solutions and “cookbooks” for such framework integration. Therefore, the goal of the task of framework integration
was to make the best decisions on crucial points (like type of communication for a given plane), according to a
carefully collected set of requirements, paving the way for a long-term flexible, supportable, maintainable, and cost-
effective MORPHEMIC platform architecture.
From the very beginning, different integration methods were already available from existing frameworks: ESB with
BPM with synchronous and asynchronous communication between MELODIC components, and synchronous REST
API invocations for integration with Activeeon’s ProActive Scheduler. The relevance of these integration methods for
the MORPHEMIC project and the need for additional integration methods were discussed according to the two
MORPHEMIC planes (Control Plane as well as Monitoring Plane) and to the MORPHEMIC specific integration
requirements (including reliability, performance, and scalability). Four integration methods were reviewed (Point-to-
point, MOM, ESB and ESB with BPM) according to each specific plane (Control or Monitoring Plane) and the
specific prioritized requirements that have been posed. An overall comparison of the integration methods was
achieved according to the degree of fulfilment of the requirements for integration and implementation effort in the
MORPHEMIC project.
Based on the results of the evaluation of each integration method, and professional recommendations of certified
architects, the ESB with BPM orchestration method of integration has been chosen as the integration strategy for the
Control Plane and the Monitoring Plane.
Out of existing open source ESB and BPM solutions, MuleESB has been chosen for the ESB implementation, while
the Camunda execution engine was chosen for the BPM part. In this way, the MORPHEMIC workflows will be
efficient and adaptable to new requirements as they come, as such processes like deployment, un-deployment and
reconfiguration processes, or even others, can be flexibly modelled. For the Monitor Plane, the ActiveMQ, as a part
of MuleESB, will be used, which efficiently fulfils the requirements of this plane. By means of this combined
solution, we can build a uniform and robust integration layer for the MORPHEMIC project, which most efficiently
handles the carefully identified requirements.

D4.3 Selection design and implementation of integration layer

Page 25

7 References

[1] J. Sutherland and W.-J. van den Heuvel, "Enterprise Application Integration and Complex Adaptive Systems,"
Communications of the ACM, vol. 45, 2002.

[2] T. Gulledge, “What is integration?”, Industrial Management & Data Systems, vol. 106, 2006.
[3] M. M. Lynne, "Paradigm Shifts - E-Business and Business/Systems Integration," Communications of the

Association for Information Systems, vol. 4, 2000.
[4] F. Losavio, D. Ortega and M. Perez, "Modeling EAI [Enterprise Application Integration]," in 12th International

Conference of the Chilean Computer Science Society, Atacama, 2002.
[5] O. Dahl, "Enterprise Application Integration - Applying Patterns to the Process of Message Transformation,"

Reports from MSI, Växjö University, no. 02142, 2002.
[6] M. Themistocleous and Z. Irani, "Benchmarking the benefits and barriers of application integration,"

Benchmarking: An International Journal, vol. 8, 2001.
[7] T. Reidemeister, "Fault Diagnosis in Enterprise Software Systems Using Discrete Monitoring Data," Electrical

and Computer Engineering, 2012.
[8] G. Blair, N. Bencomo and R. B. France, "Models@ run.time," Computer, vol. 42, 2009.
[9] M. A. Munawar and P. A. Ward, "Adaptive Monitoring in Enterprise Software Systems," Department of

Electrical and Computer Engineering University of Waterloo, Ontario, 2006.
[10] N. P. Schultz-Møller, M. Migliavacca and P. Pietzuch, "Distributed complex event processing with query

rewriting," in Proceedings of the Third ACM International Conference on Distributed Event-Based Systems -
DEBS '09, Nashville, 2009.

[11] F. Paraiso, G. Hermosillo, R. Rouvoy and L. Seinturier, "A Middleware Platform to Federate Complex Event," in
IEEE 16th International Enterprise Distributed Object Computing Conference, Beijing, 2012.

[12] A. Mdhaffar , R. B. Halima, M. Jmaiel and B. Freisleben, "A Dynamic Complex Event Processing Architecture
for Cloud Monitoring and Analysis," in IEEE 5th International Conference on Cloud Computing Technology and
Science, Bristol, 2013.

[13] M. Dayarathna and S. Perera, "Recent Advancements in Event Processing," ACM Computing Surveys (CSUR),
vol. 51, 2018.

[14] Horn, G., Skrzypek, P., Prusiński, M., Materka, K., Stefanidis, V., & Verginadis, Y. (2019, October). MELODIC:
selection and integration of open source to build an autonomic cross-cloud deployment platform. In International
Conference on Objects, Components, Models and Patterns (pp. 364-377). Springer, Cham.

[15] Kritikos, K., Skrzypek, P., & Różańska, M. (2019, December). Towards an Integration Methodology for Multi-
Cloud Application Management Platforms. In Proceedings of the 12th IEEE/ACM International Conference on
Utility and Cloud Computing Companion (pp. 21-28).

[16] Shezi, Themba, et al. "Analysis of Open Source Enterprise Service Buses toward Supporting Integration in
Dynamic Service Oriented Environments." International Conference on e-Infrastructure and e-Services for
Developing Countries. Springer, Berlin, Heidelberg, 2012.

[17] Marta Różańska, et al. “D4.1: Architecture of pre-processor and proactive reconfiguration”, 2020.

