

D3.1 Software, tools, and
repositories for code mining

Modelling and Orchestrating heterogeneous
Resources and Polymorphic applications for
Holistic Execution and adaptation of Models
In the Cloud

Executive summary

This document provides a detailed description of the software and the
tools to be used for code mining. In the MORPHEMIC project, Code
mining is needed to define application profiles, to be used for better
adapting the available polymorphic deployment configuration to the
requirements specific of the application. The applications’
deployment models provided by MORPHEMIC must be dynamic and
adaptive, and capable of handling any expected or unexpected
situation. In this way MORPHEMIC assists, the application to supply
a more or less constant level of service. The Polymorphic Adaptation
works at both the architecture and cloud service level, by defining the
most optimal deployment model according to internal (e.g., available
infrastructures) and external (e.g., load) constraints. This means that
the code mining functionality helps to define an application profile,
which, in turn, is used to obtain the best possible adaptation of the
application deployment to the available infrastructures and
component configurations/forms. The process of Code Mining in
MORPHEMIC is composed by three tasks: web crawling, code
analysis and data storage. The three aforementioned tasks define the
three components on which this deliverable is focused. In particular,
the web crawler has been identified among some candidates in order
better support the extraction of sets of information associated with
projects available on known source repositories (for example
GitHub). A prototype of the Web Crawler has been implemented and
running. It is based on the outcome of an EU co-funded research
project: MARKOS. The MARKOS’ Web Crawler was analyzed, and
its architecture was modified to be more suitable for MORPHEMIC.
The second part of the deliverable provides an analysis of the open
source code repositories to be used by the MORPHEMIC's Web
Crawler to get data and metadata. The Knowledge Base,
implementing the functionality of data storage, has been designed and
includes part of the functionalities provided by the MARKOS’ Web
Crawler. Finally, the Code Analyser should be still selected among
some candidates. The last part of the deliverable provides the results
of an analysis on code classification. The various types of projects
identified by code mining can be considered as sources for code
classes such as High-Performance Computing or web code. The first
step of the analysis concerns the identification of a set of techniques
and tools for code analysis. The second step goes deeper to explore
the concept of code classification, including appropriate
methodologies to enable the recovery of optimal deployment patterns.

H2020-ICT-2018-2020
Leadership in Enabling and Industrial
Technologies: Information and
Communication Technologies

Grant Agreement Number
871643

Duration
1 January 2020 –
31 December 2022

www.morphemic.cloud

Deliverable reference
D3.1

Date
31 December 2020

Responsible partner
Engineering Ingegneria Informatica S.p.A.

Editor(s)
Maria Antonietta Di Girolamo

Reviewers
Yiannis Verginadis, Sebastian Geller

Distribution
Public

Availability
www.MORPHEMIC.cloud

Author(s)
Amir Taherkordi (UiO), Ciro Formisano (ENG), Geir Horn (UiO), Kyriakos Krytikos (FORTH), Maria Antonietta Di
Girolamo (ENG), Marta Różańska (UiO).

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 871643

D3.1 Software, tools, and repositories for code mining

Page 2

Revisions

Date Version Partner Description
04/11/2020 Draft (0.1) ENG, FORTH, UiO 1st draft version
11/11/2020 Draft (0.2) ENG, UiO Update Section 2, Section 4,

Section 6
16/11/2020 Draft (0.3) ENG, UiO Updating figure 1, Figure 2, Figure

3, add Figure 4, updating Section
(from 2 to 6) after merging section
2 with section 4 (renamed section

2.2.2.2), Section 5
18/11/2020 Draft (0.4) ENG, UiO, FORTH Updating section 2 and section 5.
30/11/2020 0.5 ENG Complete version ready for the

first review
07/12/2020 0.6 ICCS 1st Review comments
22/12/2020 0.7 ENG Complete version ready for the

second review
05/01/2021 0.8 ICON 2nd Review comments
22/01/2021 0.9 ENG, UiO, FORTH Revised version
24/01/2021 1.0 ENG Ready for release version
10/02/2021 1.1 ENG, FORTH, UiO Updating section 5.2.4, section

2.1.3 and section 6
15/02/2021 1.2 ENG Revision of the document

D3.1 Software, tools, and repositories for code mining

Page 3

Table of Contents
1.	 Introduction .. 8	

1.1	 Scope .. 8	
1.2	 Intended Audience .. 8	
1.3	 Document Organization .. 9	

2.	 The Application Profiling ... 10	
2.1	 Introduction .. 10	

2.1.1	 Application Profiler ... 11	
2.1.2	 Role and Responsibilities of the Application Profiler ... 11	
2.1.3	 Architecture of the Application Profiler .. 12	

3.	 Code mining components ... 18	
3.1	 Introduction .. 18	
3.2	 Web Crawler ... 18	

3.2.1	 Architecture of the Web Crawler .. 19	
3.2.2	 Functionalities and process flows .. 20	
3.2.3	 Hardware and Software Requirements .. 25	

3.3	 The Knowledge Base .. 25	
3.4	 Code Analyser .. 26	

4.	 Evaluation of the Crawling process .. 28	
4.1	 Introduction .. 28	
4.2	 Evaluation of the Web Crawler .. 28	
4.3	 Evaluation of the open source project repositories ... 32	

4.3.1	 GitHub ... 32	
4.3.2	 Apache ... 33	
4.3.3	 jQuery Plugin Registry .. 36	
4.3.4	 Repositories associable to the Web Crawler ... 38	
4.3.5	 Considerations on the available resources to the MORPHEMIC’s Web Crawler 45	

5.	 Review of Code Analysis & Classification .. 48	
5.1	 Techniques for static code analysis .. 48	

5.1.1	 Static code analysers .. 48	
5.1.2	 Code quality checkers .. 49	
5.1.3	 Graph visualization for matching .. 50	
5.1.4	 Code analysis techniques ... 52	
5.1.5	 Software and Patterns .. 52	
5.1.6	 String matching ... 53	

5.2	 Algorithms for classifying the code ... 54	
5.2.1	 Tree and Graph based methods ... 55	
5.2.2	 Automatic class construction ... 55	
5.2.3	 Machine learning methods for code classification .. 55	
5.2.4	 Future plans ... 56	

6.	 Conclusion and next steps .. 56	

D3.1 Software, tools, and repositories for code mining

Page 4

7.	 References .. 59	

D3.1 Software, tools, and repositories for code mining

Page 5

Index of Figures
Figure 1 Polymorphic Adaptation architecture. ... 11	
Figure 2 Process of application profile construction ... 12	
Figure 3 Process of (functional) profile enhancement ... 12	
Figure 4: Architecture of the Application Profiler ... 13	
Figure 5 Classification functionality fulfilment through a collaboration diagram .. 14	
Figure 6 Non-functional profile construction .. 14	
Figure 7 Non -functional profile maintenance- ... 15	
Figure 8 Matching of application components. ... 16	
Figure 9 Matching of any arbitrary software component .. 16	
Figure 10 New components form the verification processes ... 17	
Figure 11 Architecture of MARKOS’s Web Crawler .. 19	
Figure 12 Architecture of MORPHEMIC’s Web Crawler .. 20	
Figure 13 Interactions of the crawling process .. 21	
Figure 14 How a data fetcher works .. 23	
Figure 15 Sequence diagram of the integration process .. 24	
Figure 16 Overview Architecture of Knowledge Base .. 26	
Figure 17 Analysis functionality fulfilment through a collaboration diagram .. 26	
Figure 18 Example of information provided by cRan ... 44	
Figure 19 Example how the information is provided .. 45	
Figure 20 Jackson Diagram ... 51	
Figure 21 Control Flow Graphs ... 51	
Figure 22 Nassi-Shneiderman Diagrams ... 51	
Figure 23 Control-Structure Diagrams .. 52	

D3.1 Software, tools, and repositories for code mining

Page 6

Index of Tables
Table 1 MARKOS Web Crawler ... 29	
Table 2 OpenHub Web Crawler .. 29	
Table 3 Krugle Web Crawler ... 30	
Table 4 ScanCode Web Crawler .. 30	
Table 5 SearchCode Web Crawler ... 31	
Table 6 Summary of the analysis of the code mining tool .. 31	
Table 7 Example of the data that can be provided by GHArchive .. 33	
Table 8 Example of data that can be provided by one Apache project. .. 36	
Table 9 All information provided by Jquery plugin registry. .. 38	
Table 10 Source code repositories comparison ... 39	
Table 11 How the metadata information is provided for OW2. .. 43	
Table 12 Metadata obtained by the preliminary analysis performed by the WebCrawler .. 46	

D3.1 Software, tools, and repositories for code mining

Page 7

Glossary

ABBREVIATIONS
AI Artificial Intelligence
API Application Programming Interface
CFGs Control Flow Graphs
CP Constraint Problem
CRAN Comprehensive R Archive Network
CTAN Comprehensive TeX Archive Network
DNA Deoxyribonucleic acid
DOAP Description of A Project
ETL Extract Transform Load
EMS Event Management System
HPC High Performance Computing
JSON JavaScript Object Notation
LCS Longest Common Subsequence
LDA Latent Dirichlet Allocation
MARKOS MARKet for Open Source - An Intelligent Virtual open source Marketplace
ML Machine Learning
MPL Mozilla Public License
N/A Not Available
OSP open-source Project
PMC Project Management Committee
PDGs Program Dependence Graphs
RDF Resource Description Framework
RNA Ribonucleic Acid
REST Representational State Transfer Application Programming Interface
SOTA State-of-the-Art
SQL Structured Query Language
URI Uniform Resource Identifier
URL Uniform Resource Locator
VM Virtual Machine
XML eXtensible Markup Language
WWW World Wide Web

D3.1 Software, tools, and repositories for code mining

Page 8

1. Introduction

1.1 Scope

This deliverable describes the software and the tools for code mining that will be part of the architecture of the
MORPHEMIC platform1.
Code mining is conceptually a data mining task focused on code, i.e., the process of extracting appropriate code from
code repositories. This means that the code and the associated metadata should be found, stored and analysed;
therefore, the concept of code mining in MORPHEMIC consists of three activities:

• crawling, to search for useful code from external repositories;
• storage, to store code and metadata;
• code analysis, to extract useful information (e.g., features) from the code found.

The status of design and implementation of the tools implementing these functionalities is different. Specifically, the
functionalities of crawling and storage will be available in the first release of MORPHEMIC. The basis on which the
tools have been built has been defined after a technological analysis whose results will be presented in this document.
Specifically, the basis of both the tools is the Web Crawler produced in the MARKOS project2. The first release of
MORPHEMIC will include a Web Crawler providing similar structure and some minor modifications with respect to
MARKOS’ Web Crawler. More improvements are planned for the next releases that will also provide an autonomous
version of the Knowledge Base, currently included in the Web Crawler. The main conceptual difference, that will
drive all the next phases of the development process of the MORPHEMIC’s Web Crawler, is that the output of the
crawling process will be evaluated against the objectives of the Polymorphic and Proactive adaptation, while, in the
case of MARKOS the target was the evaluation of licences.
Polymorphic Adaptation is one of the pillars of MORPHEMIC and includes the functionality of application profiling.
Specifically, Polymorphic Adaptation allows applications to be deployed on different environments (including multi-
cloud, edge, fog) and change their configurations based on the application features and context in order to maximize
the relevant advantages (e.g., application performance).
In this context, the definition and architecture of the Application Profiler is supplied (Section 2).
Concerning the code analysis, at the time of writing this deliverable, a first evaluation of the tools implementing this
functionality has been performed along with an analysis of the techniques, methodologies and algorithms for code
classification.

1.2 Intended Audience

The intended audience of this deliverable is:

• MORPHEMIC Use Case partners who need to have a clear view of the tools, repositories, algorithms and
techniques used for code mining as well as an understanding on how code mining results can benefit the
development and optimisation of their use-cases applications

• MORPHEMIC developers, technicians, administrators and researchers involved in the implementation and
integration of the various components implemented for the MORPHEMIC platform, in particular for the
Profiler components.

• MORPHEMIC researchers involved in, for example, the polymorphic adaptation activity or in the CAMEL
modelling framework.

• MORPHEMIC adopters and external researchers that would like to contribute to the open source
MORPHEMIC code after the end of the project; to other external users with specific interests, such as code
quality (e.g., BetterCodeHub3).

1 https://www.morphemic.cloud/
2https://cordis.europa.eu/project/id/317743
3 https://www.bettercodehub.com/

D3.1 Software, tools, and repositories for code mining

Page 9

1.3 Document Organization

The current chapter introduces the scope, the objectives, and the structure of this document. The last chapter is
dedicated to the final considerations and the planned next steps. The remaining chapters are the following:

• Chapter 2 (“The Application Profiling”) introduces the concept of application profiling as well as the high-
level architecture of the Application Profiler and its components.

• Chapter 3 (“Code mining components”) is focused on the three aforementioned components providing the
functionality of code mining and their contribution to application profiling.

• Chapter 4 (“Evaluation of the Crawling process”) provides an evaluation and a justification of the
technological choices for the crawling process: specifically, the Web Crawler component will be evaluated
against the objectives of MORPHEMIC, while the source code repositories associated or associable will be
analysed in terms of the provided information.

• Chapter 5 (“Algorithms for classifying the code”) reports the state of art about the tools and algorithms for the
code analysis and classification which could be selected, potentially extended and finally applied within the
MORPHEMIC project.

D3.1 Software, tools, and repositories for code mining

Page 10

2. The Application Profiling

2.1 Introduction

This chapter includes an analysis of the application profiling functionality, that is the generic context in which the
code mining functionality provides its contribution. From a technical point of view, the three modules of code mining,
mentioned in the previous section, are part of the Application Profiler, i.e., the MORPHEMIC module responsible for
maintain the profile of a polymorphic application. For this reason, it is very important to define the functional and
technological context in which the code mining tools are seen: this is the objective of this chapter.
The Polymorphic (Application) Adaptation feature focuses on supporting the deployment and reconfiguration of
polymorphic applications, i.e., applications that change their architecture (variant) at runtime by selecting a different
application component form from those possible based on their requirements and context.
The design and development of an “Application Profiler” is one of its main tasks: specifically, an Application Profiler
is useful to determine the best deployment options available for each variant of the application architecture. In order to
define and maintain a suitable Application Profile, it is very useful to find the software profiles of similar applications
(i.e., applications that deliver similar or equivalent functionality with respect to that of an application component): on
this sense, the analysis of data and metadata of publicly available projects helps.
Therefore, code mining is one of the core functionalities of the Application Profiler module, part of the Polymorphic
Adaptation feature. Figure 1 Polymorphic Adaptation architecture. shows the overall architecture of the Polymorphic
Adaptation feature and highlights the Application Profiler module, which directly interacts with the following
elements:

• The external Knowledge Sources, used for two main reasons: (a) to suggest and to construct an initial
performance model of the application; (b) to crawl and to mine source code repositories. Specifically, external
Knowledge Sources can be open source code repositories like GitHub (Section 4.3.1), as well as generic sites.

• The Event Management System (EMS), for updating the non-functional part of the application profile in order
to increase the quality of its precision.

• Communication with the User Interface (UI) follows different paths and enables the Application Profiler to
obtain as input different data (such as the CAMEL model4) to construct the application profile and be updated
in the event of their modifications.

• The Constraint Problem (CP) Generator generates the CP Model from the application profile. A CP model is
a constraint optimisation model which enables us to reason the best deployment solutions for the current
application.

• The Architecture Optimiser uses the application profile to assess the need for changing the application
architecture variant. Please note that each application architecture variant is derived from a different
combination of the forms/configuration classes (e.g., serverless/functions, container, hardware accelerator-
based, etc.) of all the application components. Further, a selected application architecture variant is the main
input to the MORPHEMIC core platform in order to conduct deployment reasoning and discover the best
configuration for the application at hand.

4 http://camel-dsl.org/

D3.1 Software, tools, and repositories for code mining

Page 11

Figure 1 Polymorphic Adaptation architecture.

Therefore, the Polymorphic Adaptation feature relies on a composite component called the Application Profiler. This
component produces and maintains application profiles that can be used to derive suitable deployment models aiming
to optimize the application deployment at both the architecture and cloud service level. The next section provides the
definition, role and responsibilities of the Application Profiler.

2.1.1 Application Profiler

The MORPHEMIC project aims to support the polymorphic modelling and adaptation of multi-cloud applications,
both in a reactive and proactive manner. Such applications usually comprise a single architecture, in which each
application component has a specific form. In this respect, the goal of a multi-cloud management platform is just to
find the best possible cloud services at the infrastructure level and support the execution of these fixed-form
components. However, to really support the so-called application polymorphism [1], there is a need to create the space
for multiple architecture variants which can be created through considering multiple forms for the same application
component (which deliver the same functionality). As such, then the goal of the platform is first to find the right form
of each application component based on the application requirements and then the best possible infrastructure service
for this form.
In this context, the profile of an application should cover all architecture variants of an application as well as the
different quality of service levels that can be reached by these variants. The latter information is quite crucial as
through the consideration of the user requirements, it can then be possible to select the best possible variant that
satisfies them. The management of such a profile is the main responsibility of the Application Profiler module in
MORPHEMIC.
The Application Profiler should focus only on the complex task of managing the profile of an application while the CP
generator will be responsible to generate different CP models to assist in the application architecture and configuration
optimisation tasks by relying on the maintained application profile. In the following, we will focus on the Application
Profiler module. A detailed analysis of the Architecture Optimiser of and how the CP Generator contributes to the
architecture and configuration optimisation tasks will be supplied in deliverable “D3.3 - Optimized planning and
adaptation approach” (M16).

2.1.2 Role and Responsibilities of the Application Profiler

The role and responsibilities of the Application Profiler component are related mainly to the construction and
maintenance of application profiles. In particular, the Application Profiler assists in the production of different
variants of application architecture by finding software components that might have a different form and deliver the
same functionality as the application components. The analysis of the open source software, found in code
repositories, allows us to define new forms of application components and new deployment models that enhance
existing application profiles.
Therefore, the role of the Application Profiler is mainly to construct, enhance and maintain the profile of a
polymorphic, multi-cloud application. In the context of this role, we can deduce that the main responsibilities of the
Application Profiler component are the following:

• Application profile construction: based on the specification of a polymorphic, multi-cloud application in
CAMEL, the Application Profiler is able to construct application profiles, covering the functional aspect in

D3.1 Software, tools, and repositories for code mining

Page 12

terms of both the component and application level as well as the non-functional aspect in terms of the
application (non-functional) requirements (e.g., average application execution time less than 2 hours) and
capabilities (e.g., average response time for analytics component less than 1 hour). The latter should cover the
construction of the non-functional model per each application component form and application architecture
variant. The process of profile construction is depicted in Figure 2 Process of application profile construction.

• Application profile enhancement: here the main responsibility of the Application Profiler is to enhance the
basic application profile towards mainly the functional aspect. In particular, the main goal here is to support
the discovery and incorporation of new forms of application components. This goes down to browsing and
searching open source software repositories as well as analysing the knowledge drawn in order to classify the
functionality of open source software components and match it against the one exhibited by an application
component. As the matched software components can have different forms, this can lead to suggesting new
forms of application components that need to be verified so as to be included in the application profile. The
process of profile enhancement is depicted in Figure 3.

• Application profile maintenance: the profile of the polymorphic, multi-cloud application that has been
constructed and enhanced also needs to be maintained. The maintenance can again be split into functional
maintenance and non-functional maintenance based on the two main aspects of focus. Functional maintenance
mainly covers the incorporation of new application component forms upon their verification by the DevOps in
the application profile as well as the continuous monitoring of the CAMEL application model in order to
detect changes in application components and their forms and thus update the application profile. Non-
functional maintenance mainly concerns the construction of new performance models for updated or new
application components as well as the modification of existing performance models based on the monitoring
feedback collected through the execution of the user application.

Figure 2 Process of application profile construction

Figure 3 Process of (functional) profile enhancement

2.1.3 Architecture of the Application Profiler

Based on the above analysis concerning the main role and responsibilities of the Application Profiler, a first version of
the architecture of this component has been constructed. This architecture can be seen in Figure 4, where the
highlighted components are implementing the functionalities related to code mining.

D3.1 Software, tools, and repositories for code mining

Page 13

Figure 4: Architecture of the Application Profiler

Specifically, the functionalities and tools related to code mining, i.e., the Web Crawler, the Code Analyser and the
Knowledge Base will be described in chapter 3. These functionalities were not present in MELODIC.
The following subsections will provide a brief description of the other components of the Application Profiler. These
descriptions will be very useful to better define the context of the Code Mining components.

Downloader

This component is responsible for downloading the source-code of open source software components upon the
respective incoming request. The downloaded code can be stored in the local file system, in case this component is
situated in the same host as that of the Code Analyser, which requires analysing this code; otherwise, it needs to be
stored in the Knowledge Base.

Classifier

The Classifier assists in the enhancement of application profiles by classifying open-source components, which can
potentially match application components, according to the functional aspect. The input is the information already
crawled and analysed in the Knowledge Base (i.e., metadata and functional features). This means that the input should
have already been processed by the Crawler and Analyser components. The collaboration diagram in Figure 5 shows
how the Classifier interacts with the Knowledge Base to classify the software and enrich the stored information. The
enriched information is then used to support the discovery of new forms for application components. Specifically, the
classification concerns a set of functional categories associable to the software and the actual deployment form that
they take (with respect to their configuration/form). Such an output also concerns the application components, which
could be in turn also classified. This is certainly an activity that facilitates the matching task of the Matcher, as will be
described later.
Depending on whether the Classifier applies any kind of machine learning technique, the classification model is
another output that can be produced which is also stored in the Knowledge Base. Such a classification model is quite
important as it can support both the classification of new components as well as the matching of all processed
components with, e.g., application components.

D3.1 Software, tools, and repositories for code mining

Page 14

Figure 5 Classification functionality fulfilment through a collaboration diagram

Please, note that different implementations of a certain component might be revealed by applying different
classification techniques based on potentially different functional feature forms. The selection of such a technique
depends on various factors, such as the kind and number of the software components involved, the domain on which
they are specialised and the knowledge available for these components. Potentially, it can then be a user/DevOps
decision which classification technique to utilise per each factor (value) combination.
Finally, it is important to highlight that this component not only produces but also maintains classification knowledge.
Thus, the Classifier needs to detect when the classification model needs to be updated, modify it as well as update the
functional categories that have been associated to both the open source software components already crawled and
processed as well as the application components.

NF Model Learner

The Non-Functional (NF) Model Learner implements and maintains the non-functional aspects of the application
profile. In particular, this component is in charge of constructing and maintaining a performance model for each form
of each component of an application as well as each architecture variant of the application itself. The model
construction could rely on the execution history of the application components, especially if such components are re-
used in the context of other applications. In case such an execution history does not exist, then the NF Model Learner
could inspect other sources to derive the needed knowledge, such as benchmarking ones. Both cases are depicted in
Figure 6.

Figure 6 Non-functional profile construction

D3.1 Software, tools, and repositories for code mining

Page 15

The performance model is maintained and updated to be as precise as possible based on the execution history of the
current application (i.e., based on the measurements collected by the platform while the application is being deployed
and executed). Such a model is stored and updated within the Knowledge Base: it is shown in Figure 7.

Figure 7 Non-functional profile maintenance

Matcher

The Matcher component is responsible for matching application components and their requirements with open source
software components as can be seen in Figure 8 Matching of application components. As such, it exploits the
knowledge derived from the CAMEL model in terms of the application components as well as the knowledge stored
in the Knowledge Base, derived from the open source software components by the Classifier and the Analyser. The
matching will rely mainly on the functional aspect. This means that the components are matched based on their
functional categories. This pre-supposes that also 'the application components have been mapped into specific
functional categories by the Classifier, as mentioned above.
The produced matching results will be ranked based on the non-functional knowledge (component quality and security
levels) derived by the Analyser. The objective of the matching process is to derive new forms of existing application
components. This signifies that there is no point in returning results that map to existing application component forms
unless the user/DevOps desires to replace them. The output of this component, i.e., the matching results, is associated
with the matched application component in the application profile / Knowledge Base. However, it is the duty of the
DevOps to test the matching results before approving them to become the new forms of application components. Upon
approval, the new forms of application components are also inserted in the CAMEL model of the application and,
thus, taken into account in the forthcoming Application Variant Selection / Architecture Optimisation Reasoning
process executions (operated in the context of a deployment of the corresponding application).
This component is complementary to the functionalities supplied by the Classifier and Code Analyser. It can actually
be stated that the Classifier and Analyser prepare the main ground for supporting the matching task which results in
the enhancement of the functional profile of an application.

D3.1 Software, tools, and repositories for code mining

Page 16

Figure 8 Matching of application components

It must be highlighted that the Matcher associates matching results with the components of all applications handled by
the respective MORPHEMIC platform instance. However, it can also be utilised for consulting purposes irrespective
of any application already handled by the platform instance. In particular, the Matcher can be considered as a micro-
service which enables us to find the right open source software components that match arbitrary components, whose
source code URL is supplied as input to the respective method of this micro-service. In that case, the Matcher will
need to first discover the functional categories of that arbitrary component before matching them with those of the
open source software components crawled. This will require utilising the Code Analyser to extract the functional
features of the component to be matched and then applying the classification model, derived by the Classifier and
stored in the Knowledge Base, on the extracted features in order to produce the right categories of that component.
This matching case is depicted in the Figure 9.

Figure 9 Matching of any arbitrary software component

D3.1 Software, tools, and repositories for code mining

Page 17

Profiler Maintainer and CAMEL Modules

The Profiler Maintainer is responsible for constructing the profile of an application as well as maintaining it. In the
first case, the component constructs the application profile from the CAMEL model of the application and invokes the
NF Model Learner in order to construct an initial performance model for each application component form. In the
second case (profile maintenance), it is actually invoked in two situations:

• CAMEL model update: it checks whether the update of an application’s CAMEL model has led to changing,
replacing or adding application components. If this holds, then the application profile will have to be updated.
The same process as in the case of profile construction is followed to extract the needed information from the
CAMEL model as well as constructing the initial performance models of new components or updating
existing models in case of component modifications via the NF Model Learner.

• New component form verification: the suggested new forms of a component by the Profiler are validated by
the DevOps. Once this validation is finished and the DevOps requires the consideration of the respective new
application component form, and it executes through the CAMEL Designer the corresponding method of the
Profile Maintainer. In this situation, the Profile Maintainer informs the application profile to highlight that the
new component form has been verified. In addition, it requests the NF Model Learner to construct a
performance model for this component form. If the method execution succeeds, the CAMEL Designer should
update the application’s CAMEL model so as to include the new and validated form of the respective
application component. This form verification process is depicted in Figure 10 New components form the
verification processes.

Figure 10 New components form the verification processes

Based on the above analysis, it becomes clear that the Profiler Maintainer can be considered as realising the
application profile construction and maintenance responsibility, where the maintenance covers the updating of user
application CAMEL models as well as the verification of suggested new application component forms.

D3.1 Software, tools, and repositories for code mining

Page 18

3. Code mining components

3.1 Introduction

This chapter is focused on the components of the Application Profiler providing the functionality of code mining. As
mentioned in Chapter 1, three components are involved in this functionality: Web Crawler (Section 3.2), Knowledge
Base (Section 3.3) and Code Analyser (Section 3.4).

3.2 Web Crawler

Data mining [2] is defined as the identification of information through targeted extrapolation from large single or
multiple databases: if needed, data from different sources are crossed to obtain more accurate information. Data
crawling techniques [3] (as distributed crawling, general purpose crawling, or focused crawling) are used for data
mining.
The techniques and strategies applied to data mining operations are largely automated, consisting of specific software
and algorithms suitable for a specific big data [3] in acceptable times, where data are contained in data warehouses
scattered around the web and can be heterogeneous and of potentially endless types. They enable us to find
associations, anomalies and recurring patterns. The high parallelism and the increasing amount of computing
resources available nowadays (alongside highly specialized operators), enables us to apply data mining techniques
with efficiency that far exceeds manual analysis. Web Crawlers are used to extract useful sets of information
interrelated from data sources on the web. Many types of metadata [4] are provided, such as descriptive, structural,
administrative, reference and statistical metadata.
Specifically, in MORPHEMIC, the Web Crawler looks for metadata associated to projects available on known source
repositories. At the time of writing this document, a prototype of the Web Crawler has been implemented and running:
it is based on the Web Crawler [5] of the MARKOS system. MARKOS is an “Intelligent Virtual Marketplace for
Open Source projects”, the outcome of an EU co-founded research project5. One of its Web Crawler’s functionalities
is to search for open source projects stored in a set of software repositories, analyse the code and the documentation,
especially concerning the licenses, and visualize the results. The components produced in the MARKOS project had
been designed to be reusable. Specifically, they can be separated by the rest of the platform, used as standalone
services and re-integrated to other platforms regardless of the implementation details. The licence, Mozilla Public
Licence 2.06, allows to reuse the Web Crawler in the MORPHEMIC project and to modify it accordingly.
Specifically, the MARKOS Web Crawler can be used as a standalone service to provide metadata of open source
projects and to get references for the source code.
The MARKOS project was focused on software licensing, so the MARKOS’ Web Crawler aims at this objective.
However, most of the metadata retrieved are useful for software categorization as well: for this reason, the
MORPHEMIC’s Web Crawler can reuse most of the functionalities provided by the MARKOS Web Crawler. For the
current release of MORPHEMIC, some preliminary modifications have been introduced. Others are already planned
and it is possible that the results of the project will suggest more in the future. So far, one main change concerns the
interaction with GitHub and Apache repositories. The current version of the MARKOS’ Web Crawler does not
interact directly with them, but uses Flossmole7 (a collaborative collection of Free, Libre, and Open Source Software
(FLOSS) data) as a mediator. However, Flossmole has not updated GitHub and Apache projects since 2017, so it is
not currently useful for MORPHEMIC. As a consequence, Flossmole has been removed from the list of the
configured source code repositories and a module to directly interact with GitHub (Section 4.3.1) and Apache (Section
4.3.2) has been implemented and integrated. A second important change with respect to the MARKOS’ version
concerns the components aimed at retrieving metadata. Specifically, an analysis on the attributes and metadata needed
by MORPHEMIC has been performed. This analysis aimed at determining whether all the needed metadata were
provided by the main repositories and whether any formal modification was needed.
Figure 11 shows the architecture of the MARKOS Web Crawler. All its components have been inherited by
MORPHEMIC but the DOAP schema, which has been included in the Knowledge Base (Section 3.3).

5 https://cordis.europa.eu/project/id/317743
6 https://www.mozilla.org/en-US/MPL/2.0/
7 https://flossmole.org/

D3.1 Software, tools, and repositories for code mining

Page 19

Figure 11 Architecture of MARKOS’s Web Crawler

The DOAP schema stores data and metadata of the retrieved open source projects at the end of the crawling process.
Such data and metadata are stored in a unique standard format regardless their origin: specifically, some repositories
already provide data in DOAP standard format (for example Apache projects, Section 4.3). In the other cases, specific
conversion mechanisms have been implemented starting from the format in which data are provided (zip page, Json,
XML or HTML, Section 4.3).
In the second release of MORPHEMIC, DOAP support will be part of the Knowledge Base (more details are provided
in Section 3.3).

3.2.1 Architecture of the Web Crawler

The architecture of the MORPHEMIC’s Web Crawler is shown in the following figure:

D3.1 Software, tools, and repositories for code mining

Page 20

Figure 12 Architecture of MORPHEMIC’s Web Crawler

The components of MORPHEMIC’s Web Crawler are following:

• Orchestrator: it contains the Data Fetchers and coordinates their work. In particular data fetchers are clients
dedicated to specific source code repositories (e.g., GitHub, Apache). The details about how the orchestrator
and the data fetchers work are provided in the section 3.2.2, “Orchestrator” and “Data Fetcher”.

• Data Warehouse: stores the data downloaded from the repositories, including data of the DOAP. In the first
release, the DOAP tables will be part of the data warehouse, starting from the second release, just they will be
included in the Knowledge Base.

• Integrator: it is responsible for grouping the similar pieces of information coming from different sources;
more details are provided in the Section 3.2.2 “Integrator”.

• Notifier: searches for batches of integrated projects that have been changed during the last iteration.
Specifically, a project is flagged as changed if:

o metadata has been changed with respect to the previous version;
o there is a new release or information about an existing release has changed.

If a project has changed, the Notifier sends a notification to the Code Analyser, through the Knowledge Base,
identifying the changed project.

3.2.2 Functionalities and process flows

The functionalities provided by the Web Crawler are the following:

• maintain a list of data sources and structured information related to open source projects where:
o forges are accessed directly, via API or crawling on the site
o services offer data aggregated from different forges

• download automatically and continuously part of that information as raw data

D3.1 Software, tools, and repositories for code mining

Page 21

• prepare an integrated structure that stores each information token together with its own source when
information about a specific project can be retrieved from different sources

• interact with the Knowledge Base to store the information downloaded and parsed
• make available the information processed as a running RESTful API service
• notify the Code Analyser when new releases have been made available;
• continuously crawl the repositories/websites of all projects looking for updated releases.

The interactions of the crawling process are shown in Figure 13. The process gets data from external repositories,
through the web, and stores them on a specific storage, as mentioned above, part of the Knowledge Base.

Figure 13 Interactions of the crawling process

Data Warehouse

The Data Warehouse, as mentioned in the previous section, stores data retrieved from the repositories.
Specifically, the Data Warehouse is an internal data store in the Web Crawler and it can be exploited from the
Knowledge Base. It is implemented as a set of tables on a relational database (i.e., MySQL8 and MariaDB9),
containing the following information:

• raw data, i.e. not-processed information downloaded from the repositories. These tables containing these data
are identified with the prefix “RAW” followed by the name of the specific repository: for example,
RAW_Apache, RAW_GitHub, RAW_Jquery;

• DOAP data, i.e. data describing the retrieved projects. These data are shared with the Code Analyser. All
these tables are compliant with the standard DOAP RDF schema10. The DOAP tables are identified with the
prefix “DOAP” followed by the name of the specific piece of information provided as defined in the DOAP
RDF schema. For example, the table called DOAP_Project provides refers to the fetched project (such as
name of the project, description, category, home page,etc). The table DOAP_Repository provides information
about the repository used by the fetched project (i.e.location of the repository).

8 https://www.mysql.com/
9 https://mariadb.org/
10 https://www.w3.org/wiki/SemanticWebDOAPBulletinBoard

D3.1 Software, tools, and repositories for code mining

Page 22

Data Fetcher

Data fetchers are sub-components of the Orchestrator acting as clients and implemented according to the specific
features of the associated source code repositories. It is possible to implement a specific data fetcher if a new source
code repository is associated. At the time of writing this Deliverable, the implemented Data Fetcher (in the
MARKOS’s Web Crawler) up and running are:

• GitHub (Section 4.3.1);
• Apache (Section 4.3.2);
• jQuery Plugin (Section 4.3.3).

As mentioned before, one of the most important modifications of MORPHEMIC’s version with respect to the
MARKOS’ one concerns the metadata retrieval process for GitHub. Specifically, the Data Fetcher for GitHub in
MARKOS was based on Flossmole11 while in MORPHEMIC it is directly implemented. In general, the details of the
procedure by which each data fetcher interacts with the associated source code repository depend on the respective
implementation and configuration. These details include the timing (e.g., a certain data fetcher may actually contact
the source code repository on a daily basis or on a regular basis every 7 or 15 days) and the data format (for instance,
the Apache Software Foundation provides a web page containing a list of the URLs of all DOAP12 files for the
projects it hosts, while other repositories provide specific web services) as reported in the dedicated section,
Orchestrator.

Orchestrator

The Orchestrator defines the scheduling of the polling processes, and, in general, the timing of the whole crawling
process. Specifically, it continuously polls each associated source repository looking for new data or metadata. The
polling time is configurable (e.g., once a day) and the interaction with a certain source code repository happens
through a specific Data Fetcher.
As mentioned above, the polling period is configurable: actually, the configuration file of the Web Crawler contains
several pieces of information, some of which are generic, others are per-fetcher. The following list is part of the
configuration file and contains some of the configuration fields. For example, the general
reporitory_crawler_sleep_time defines the polling time while apache_every_n_days defines how frequently (how
many days) the Apache data fetcher should retrieve the relevant data:

[General]
 sleep_time=30000
 notifier_sleep_time=60
 repository_crawler_sleep_time=30060
sf_file_path=/home/people/markos/markos02/data-for-doap-work
 flossmole_file_path=/home/people/markos/markos02/flossmole
 temporary_directory=/tmp
 exit_now=False

[Fetchers]
 # a negative number (e.g. -1) disables the source
 apache_every_n_days=-1
 github_every_n_days=1
 jqueryplugin_every_n_days=-1

[RepositoryCrawler]
 github_archive_months=3
 # how many events make a project interesting for the code analysis

11 https://flossmole.org/
12 https://www.w3.org/wiki/SemanticWebDOAPBulletinBoard

D3.1 Software, tools, and repositories for code mining

Page 23

 github_top_projects_event_count=100
…………………………….
…………………………….
……………………………	

The sequence diagram explicating how the generic data fetcher works is shown in Figure 14. It includes data fetching
tasks and persistence in the Knowledge Base (a generic Datawarehouse in the diagram), too.

Figure 14 How a data fetcher works

Integrator

After the fetching process is completed, the downloaded data are stored in general locally in specific batch files.
At this point the Integrator checks if instances of the same project are stored on different source code repositories. In
order to achieve this objective, the Integrator extracts all the associated projects records from the downloaded batch
files and tries to match the projects according to some key elements, such as name homepage, repository URL, etc. If
the matching process results in projects that are different instances of the same project, the Integrator aggregates their
data and stores them. It is possible to summarize the integration process in the following steps:

• get each information and store it along with its source;
• extract all the projects’ records associated with the unique identifier (referred to as batch) and, for each of

them, find existing projects matching the name of the project;
• all the data coming from different sources are aggregated and stored on dedicated tables (called integrated

data table).

Figure 15 shows the sequence diagrams of the integration process, which includes the notification to the Code
Analyser.

D3.1 Software, tools, and repositories for code mining

Page 24

Figure 15 Sequence diagram of the integration process

D3.1 Software, tools, and repositories for code mining

Page 25

Notifier

At the end of the process, the Web Crawler will provide the Knowledge Base with integrated data from all the sources
referring to the same project. The project name is the key that can be used to search for this information.
A notification is also sent to the Code Analyser to inform you that a new integrated project has been stored.
The notification component notifies the Code Analyser in case of change. Each project during the integration phase
can be flagged as changed if:

• new release or new information about existent release has occurred;
• metadata information changes with respect to previous change.

A notification includes the identifier of the project’s batch to which it is referred. If required, other components of the
Application Profiler (such as the Analyser) will retrieve the entire project in a batch and process it synchronously.
The Web Crawler fetches information about open source projects from a heterogeneous set of sources (open source
software forges and others are meta-forges). The process is very repository-specific, since each forge, Meta forge, list
of directory projects, list of packages provides data and metadata in a different way. The MARKOS version already
included some data fetchers to get data from different repositories. In general, it is possible to implement other data
fetchers in case during the MORPHEMIC project other repositories might be considered relevant as well.

3.2.3 Hardware and Software Requirements

The Web Crawler is released under the Mozilla Public License, v. 2.0 and is written in Python2.7. It can be deployed
on Ubuntu 18.04 LTS and needs to be associated with a relational database to store the metadata. It has been tested
with MySQL13 and MariaDB14.
The minimum hardware requirements to install the Web Crawler are:

• 2 cores CPU;
• 4 GBs of RAM;
• 2 GBs of disk space per month’s information.

An implementation of this web crawler is available for testing purposes15

3.3 The Knowledge Base

The Knowledge Base is a repository responsible for managing (storage, update, delete, searching) all the knowledge
collected for the user application and its profile as well as the open source software components crawled. Furthermore,
the Knowledge Base plays the role of an intermediate communication medium among the components of the
Application Profiler. For example, the Web Crawler uses the Knowledge Base to store the metadata about the crawled
projects. The Knowledge Base is then acceded by the Classifier to exploit those metadata in order to realise its
classification functionality. Finally, it should be noted that the Knowledge Base can interface with the CAMEL
Designer (as showed in Figure 4) in order to enable users to inspect the functional matches of their application
components. Such an inspection can then facilitate users in verifying new application component configurations
through the use of the Profile Maintainer. This can finally lead to updating also the application’s CAMEL model with
the verified component configurations.
As mentioned above (Section 3.2.2), the DOAP Schema, part of the architecture of the MARKOS’ Web Crawler,
starting from the second review of MORPHEMIC, will be included in the Knowledge Base. Specifically, it will
integrate the data storage functionality that will be acceded through RESTful web services by all the components of
the Application Profiler. The following figure shows the details:

13 https://www.mysql.com/
14 https://mariadb.org/
15 https://www.fiware.org/

D3.1 Software, tools, and repositories for code mining

Page 26

Figure 16 Overview Architecture of Knowledge Base

3.4 Code Analyser

The Code Analyser processes the source code downloaded from the repositories. It has two main responsibilities:

• retrieval of the metadata related to quality and security;
• extraction of functional features.

Figure 17 represents the collaboration diagram describing the interactions that are involved in the process of code
analysis concerning the interaction with the related components of the Application Profiler.

Figure 17 Analysis functionality fulfilment through a collaboration diagram

The first responsibility for this component is to check the quality and security level of the source code of crawled
software components through the use of appropriate techniques, such as static analysis (see Section 5.1.4). Its main
goal is to produce additional knowledge (for crawled software components), to be stored in the Knowledge Base, that
can assist in the ranking of functional matching results (between application and crawled software components). The
main rationale is that DevOps should be assisted in selecting the right software component from the ones matched
based on the software component quality and security level. As a result, through the right component selection, the
overall application quality and security level is maintained or even enhanced.
Another responsibility of this component is to conduct feature extraction, like for example, to produce the right input
that is then amenable for (functional) classification. The feature extraction can result in features represented in

D3.1 Software, tools, and repositories for code mining

Page 27

different forms. For instance, a bag or vector of words can be one form while a control flow or program dependence
graph another. Irrespectively of the form, the extracted features are imported back to the Knowledge Base to further
enrich the metadata specification of open source software components.
It must be highlighted that the quality, security and functional feature knowledge is not only produced the first time a
certain component is being processed: if the source code changes the knowledge will be updated, re-executing the
crawler process. Thus, this knowledge is not only produced but also properly maintained.
Finally, it must be noted that this component pre-supposes that the Downloader has already downloaded the source
code that has to be analysed.

D3.1 Software, tools, and repositories for code mining

Page 28

4. Evaluation of the Crawling process

4.1 Introduction

As mentioned above, the code mining components search for data on the web. Specifically, the Web Crawler is
configured with pointers to a set of open source project repositories from which metadata and source code can be
retrieved.
This chapter will provide an evaluation of the current implementation of the Web Crawler (Section 3.2) and of the
associated and associable repositories (Section 4.3).

4.2 Evaluation of the Web Crawler

The starting point of MORPHEMIC’s Web Crawler is MARKOS’ Web Crawler. The choice has been defined
following an evaluation process in which some alternatives have been compared. This section provides the results of
this comparison, in particular the following tools have been considered:

• MARKOS16;
• OpenHub17;
• Krugle18;
• ScanCode;19
• SearchCode20.

The parameters used to evaluate these tools are:

• Description of the project.
• Operating mechanism: how the tool works and its main functionalities.
• URL: reference link to the website (if exist).
• Date of creation: to understand if the project is new or consolidated.
• Status: if the tool is currently used by at least one community or is deprecated.
• Support: if any kind of support is provided.
• Forum: if a forum exists to share information with a community.
• Documentation: availability of the documentation (API, source code and/or download link).
• Ownership: who is the owner?
• License: in particular if the tool is an open source or, at least, freely usable.
• Database: how the information is stored, how the collection data are managed and analysed.
• Programming language: the programming language used to implement the tool.

This information is reported for each tool in the following tables (from Table 1 to Table 5).

16 https://cordis.europa.eu/project/id/317743
17 https://www.openhub.net/
18 https://krugle.webtuits.com/
19 https://github.com/nexB/scancode-toolkit
20 https://searchcode.com/

D3.1 Software, tools, and repositories for code mining

Page 29

Table 1 MARKOS Web Crawler

MARKOS
Description of the
project

MARKOS Web Crawler provides an architectural and semantic classification of the retrieved projects.
MARKOS inspects the code structure showing the components, their internal and external dependencies
and their interfaces.

Operating
mechanism

MARKOS Web Crawler is a RESTful web service. The Web Crawler retrieves the structured or
unstructured content of open source projects. The analysis tools retrieve the information from the
description and license of the analysed software. The produced information is stored in a relation
database (MySQL or MariaDB) for the publication of linked data and for supporting queries from the
front-end side. The Web Crawler visits the registered project sites and notifies the existence of new or
modified open source projects using specific communication protocols.

URL https://sourceforge.net/projects/markosproject/files/MARKOS%202.0/sources/
Date of creation 2013
Status Active
Support Yes
Forum No
Documentation ENG is the owner of the Web Crawler and can provide the documentation.
Ownership Engineering Ingegneria Informatica
License Mozilla Public License, v. 2.0
Open Source Yes
Database MySQL or MariaDB
Programming
Language

Python

Table 2 OpenHub Web Crawler

OpenHub
Description of the
project

OpenHub (or Ohloh) is an open source directory that anyone can access. It provides statistics on
projects, their licenses (including possible conflicts between various licenses) and software metrics
(such as number of lines of code or commit statistics for new code releases, in particular). It features
comprehensive metrics and analytics on thousands of open source projects.

Operating
mechanism

OpenHub is a Restful web service and gets the needed information from versioning and revision
systems (such as CSV, SVN or GIT).

URL www.openhub.net
Date of creation 2006
Status Active
Support Yes
Forum Yes
Documentation Yes
Ownership Black Duck Software
License Proprietary
Database PostgreSQL
Programming
Language

Ruby

D3.1 Software, tools, and repositories for code mining

Page 30

Table 3 Krugle Web Crawler

Krugle
Description of the
project

Krugle is a search engine that enables to locate open source code and quickly share it with other
developers. Krugle provides mainly statistics (number of commits per user, evaluation of the
competences of the developers working on a certain project)

Operating mechanism Krugle collects through modern crawling and research technologies
specifications, project plans, defect tracking records, build records and source code.
This information is organized using the rich metadata captured by these systems and loaded into
dedicated databases. The information is accessed via REST services.

URL https://www.krugle.com/
Date of creation 2009
Status Active
Support Yes
Forum Yes
Documentation Yes
Ownership Aragon Consulting Group
License Enterprise Edition is a Proprietary license. However, in the engine’s

 website, there is a engine demonstration version: https://opensearch.krugle.org
Database Not available
Programming Language Not available

Table 4 ScanCode Web Crawler

ScanCode
Description of the
project

ScanCode detects licenses, copyrights, manifests, packages and more by scanning the code.
ScanCode is a monitoring tool, a License Management and a Web Application.

Operating mechanism The tool works locally on the code stored on a specific machine, so it needs to be installed.
Specifically, ScanCode collects all the information useful for license analysis (and more) in a
database and allows : 1) to collect an inventory of code files and classify code using file types; 2)
to extract files from any archive using a generic extractor, able to extract texts from binary files; as
well 3) to use an extensible rules engine to detect open source license text and communications; 4)
to use a specialized parser to capture copyright statements; 5) to identify the package code and
collect metadata from packages; 6) to report the results in different formats (JSON, CSV, etc.) to
be used with other tools or with the browser.

URL https://github.com/nexB/scancode-toolkit
Date of creation Not available
Status Active
Support tool Yes
Forum Yes
Documentation Yes
Ownership nexB
License Apache-2.0 with an acknowledgment required to accompany the scan output. Public domain CC-0

for reference datasets. Multiple licenses (GPL2/3, LGPL, MIT, BSD, etc.) for third-party
components.

Database Not available
Programming Language Python 2.7

D3.1 Software, tools, and repositories for code mining

Page 31

Table 5 SearchCode Web Crawler

SearchCode
Description of the
project

SearchCode is a free source code and documentation search engine. The API documentation, code
snippets, and the open source repository (free software) are indexed and searchable. It has indexed
several billion lines of code and more than 90 languages.

Operating mechanism Indexes and makes searchable code snippets and open source (free software) repositories available
on the web.

URL https://searchcode.com/
Date of creation 2014
Status Active
Support tool Yes
Forum Yes
Documentation Yes
Ownership SearchCode
License The starter version offers unlimited users, identifies more than 100 languages, secure APIs. It is

possible to perform basic operations (e.g. search) but APIs can only be modified for a fee :
https://searchcodeserver.com/pricing.html. The other versions are paid as reported by the link
above.

Database MySQL
Programming Language Java

The following table summarizes the information on the analysed tools:

Table 6 Summary of the analysis of the code mining tool

 MARKOS OpenHub Krugle ScanCode SearchCode
Documentation Yes Yes Yes Yes Yes

License Open Source Proprietary
software.

Proprietary
Software

Open
Source

Starter version is free, but the operations
cannot be modified and extend the API:
https://searchcodeserver.com/pricing.ht
ml

Database MySQL,
MariaDB PostgreSQL N/A N/A MySQL

Programming
Language Python, Java Ruby N/A Python Java

Status Active Active Yes Active Active
Support

Tools
Yes Yes Yes Yes Yes

Forum No Yes Yes Yes Yes
Brief description
of the search
and crawl
processes

Focus on the

software
structure

Focus on the

project
structure

Focus on the
offer's user

statistics

Focus on
the

monitoring
tool

Focus on source code and search engine
documentation

MARKOS was selected due to the fact that:

• it focuses on the software structure (e.g., on Dependencies between components, interfaces etc.) and not on
the structure of the project (e.g., dependencies between activities and people as for example OpenHub);

• its components can be re-used and extended for the MORPHEMIC platform;
• no limitation for the license of use (as in the case of SearchCode) since it is open source (and not proprietary

like, for example, Krugle or OpenHub);
• the database is available and known. For some of the analysed tools the used database is not clear (as for

example ScanCode or Krugle).

MARKOS provides RESTful APIs. The advantages of this technology are:

• independence: independent from languages and platforms;

D3.1 Software, tools, and repositories for code mining

Page 32

• client-server separation: allows us to independently deal with the evolution of the various components and the
interface can be used on different types of platforms;

• scalability: if the platform scales the interfaces do not change.

Unlike other tools, MARKOS retrieves the content of open source projects and makes a deep inspection of the code
structure showing the components, their internal and external dependencies, and their interfaces (not just the number
of developers, release number, commits).
The MARKOS system mainly analyses the software and the metadata contained in the repositories that offer public
and standard login interfaces (e.g., CVS, SVN, GIT) by using well-known protocols (e.g., Linked Data using the
DOAP).
The components produced in the MARKOS project are designed to be reusable. Specifically, they can be separated by
the rest of the platform, used as standalone services and re-integrated in other platforms regardless of the
implementation details.
In particular, the MARKOS Web Crawler can be used as a standalone service to provide metadata of open source
projects usable for MORPHEMIC. The MARKOS Web Crawler will be easily integrated in the MORPHEMIC
platform through the Restful APIs. Some modifications were implemented or are planned (section 3.2), mainly to
interact with other source code repositories or to make integration easier at architecture level. However, the main
functionalities will be preserved.

4.3 Evaluation of the open source project repositories

The projects and software data are actually distributed on several existing forges and meta-forges on the Web. The
Web Crawler retrieves the projects metadata, compliant to the description of a project format, which provides all
information about the application project processed and contains information like project name, description, URI of
source code repository, and so on. The data gathered by the Web Crawler are stored in the Knowledge Base.
Every repository supports a different way to collect the project information: API, SQL format, HTML, json, xml or
compressed file.
For the MARKOS project, the selection of the source code repositories to be associated was performed based on a
survey among the technical partners, who had been requested to evaluate their interest on a list of meta-forges (e.g.,
Ohloh, Flossmole) and forges (e.g., GitHub). The same approach has been used in MORPHEMIC: specifically, a set
of active repositories has been presented to the technical partners. The result of this work is documented in sections
from 4.3.1 to 4.3.3. Their evaluation is based on the following information:

• where the data is taken from;
• how the downloaded data looks like (zip, xml, json, etc.);
• what is the information parsed, loaded and integrated;
• what is the complete set of information produced by each repository.

Another activity has been studying and analysing other possible repositories that could be useful, even if not already
associated for the crawling to the MORPHEMIC platform. Section 4.3.4 provides a description of the work conducted
for this purpose.

4.3.1 GitHub

GitHub21 is a web and cloud-based service that helps developers to store and manage their code and track & control
changes. The information provided highly depends on the forge it comes from; the information about GitHub is
provided through the GHArchive22-which collects information on the events of the projects. More than twenty types of
events are provided as new commits, fork events, opening new tickets, commenting, and adding members to a project.
Events are collected into hourly archives: each of them contains JSON encoded events which can be acceded23 with
any HTTP client.

21 https://github.com/
22 https://www.gharchive.org
23 https://docs.github.com/en/free-pro-team@latest/rest

D3.1 Software, tools, and repositories for code mining

Page 33

As reported in the GHArchive documentation24, the only recommendation is to restrict the queries to relevant time
ranges to minimize the amount of the data considered. Specifically, the processing of up to 1 TB of data per month is
free of charge.

Use of MORPHEMIC

GitHub is an important source of information for MORPHEMIC as it aggregates data from a plethora of different
heterogeneous projects.
The Web Crawler accedes directly GHArchive that provides the information of the events associated to each project in
the XML format. The project list is retrieved by inspecting the events associated to the projects. Moreover, the events
contain most of the information needed by MORPHEMIC. The list is shown in Table 7 Example of the data that
can be provided by GHArchive.

Table 7 Example of the data that can be provided by GHArchive

Field Description Example
Id Unique identified for the

event
“13087388045”

Type The type of the event “Release Event”

Actor Actor generating event. It
is provided in a Json
format

{"id":41898282,"login":"github-actions[bot]","display_login":"github-
actions","gravatar_id":"",
"url":"https://api.github.com/users/github-actions[bot]",
"avatar_url":"https://avatars.githubusercontent.com/u/41898282?”.....

Repo The repository is
associated with the event.
It’s provided in a Json
format.

{"id":284021818,
"name":"grische/blender",
"url":"https://api.github.com/repos/grische/blender"…..

Payload Payload depending on the
release Event Type. It can
provide information about
the release. It is encoded
in Json format.

{"tarball_url":"https://api.github.com/repos/grische/blender/tarball/v2.90.0-
72b422c1e101","zipball_url":"https://api.github.com/repos/grische/blender/zipball/
v2.90.0-72b422c1e101","body":""

Created Timestamp of associated
event

“2020-08-02T11:59:48Z”

Public Type of Boolean: true if
the event is public, false
otherwise.

True

4.3.2 Apache

Apache is the source code repository developed by the Apache Software Foundation25.
In order to be published, the projects must be approved by the Apache Project Management Committee (PMC). After
that, an approved project is added in an XML that links to individual DOAP files26:

24 https://www.gharchive.org/
25 https://www.apache.org/
26 https://svn.apache.org/repos/asf/comdev/projects.apache.org/trunk/data/projects.xml

D3.1 Software, tools, and repositories for code mining

Page 34

<!-- Licensed to the Apache Software Foundation (ASF) …............................. See the License for the specific language
governing permissions and limitations under the License. -->
<!-- Project DOAP files ================== Each PMC (committee) may manage one or more projects, each of
which should have a DOAP listed here. This list may include projects that have been retired. The PMC descriptor files are
listed in the file committees.xml (in this directory) -->

<doapFiles>
<!-- was in projects-old https://svn.apache.org/repos/asf/infrastructure/site-tools/trunk/projects/files.xml -->
<!-- This file is ordered by committee and then by project managed by corresponding PMC -->
<location>http://svn.apache.org/repos/asf/abdera/java/trunk/doap_Abdera.rdf</location>
<location>https://accumulo.apache.org/doap/accumulo.rdf</location>
<location>http://svn.apache.org/repos/asf/ace/doap.rdf</location>
<location>http://svn.apache.org/repos/asf/activemq/trunk/doap.rdf</location>
<location>https://svn.apache.org/repos/asf/airavata/airavata_doap.rdf</location>
<location>https://svn.apache.org/repos/asf/allura/doap_Allura.rdf</location>
…...
<location>http://zookeeper.apache.org/doap.rdf</location>
<!-- This file is ordered by committee and then by project managed by corresponding PMC -->
</doapFiles>

For each project list, the Web Crawler downloads an xml file that provides the information. Each reference represents
a project. The crawler points in a loop to each reference, and fetches the xml file that contains the information of the
selected project.

D3.1 Software, tools, and repositories for code mining

Page 35

Use of MORPHEMIC 	

The information of the projects retrieved by the Web Crawler is provided in a DOAP XML standard format.
Currently, the following information is provided:

• Name of the project.
• Description of the project.
• Programming language (e.g., Java, Python, etc).
• Release version: list of the versions released for the selected project.
• Download page: reference link where it’s possible to download the source code of the selected project.
• Date: release version date.
• Maintainer: name of the user that maintains the project (one or more users).
• License: type of License (e.g., Apache 2.0).
• Homepage: reference link (e.g., http://brooklyn.apache.org).
• Created: date of creation of the project (e.g., 2016-02-23).

Additional information could be provided if needed as reported in Table 8 Example of data that can be provided by
one Apache project:

D3.1 Software, tools, and repositories for code mining

Page 36

Table 8 Example of data that can be provided by one Apache project

Field Description Example
Name Name of the project Apache Brooklyn
Description Full description of the project Brooklyn is about deploying.... and managing applications:

composing a full stack for an application; deploying to cloud and
non-cloud targets; using monitoring tools to collect key
health/performance metrics; responding to situations such as a
failing node; and adding or removing capacity to match demand

Created Date of project creation 2016-02-23
License Type of license Apache-2.0
Homepage Reference Link http://brooklyn.apache.org
Short
description

Short description of the project Apache Brooklyn is a framework for modelling, monitoring, and
managing applications through autonomic blueprints

Bug database Reference link to the issue home
page project

https://issues.apache.org/jira/browse/BROOKLYN/

Mailing-list Reference link to the community http://brooklyn.apache.org/community/mailing-lists.html
Download page URI of the download page http://brooklyn.apache.org/download/index.html
Programming
language

Programming language used for the
project

Java

Category The name of the category to which
the project belongs to

Cloud

Release List of versions for that release. For
each release other information is
provided: name, date of creation
and revision.

<release>
<Version><name> 0.11.0</name><create>2017-05-18</create>
<revision>0.11.0</revision></Version>
</release>
<release>
<Version><name> 0.12.0</name><create>2017-12-18</create>
<revision>0.12.0</revision>
</Version>
</release>
…..........

Repository List of repositories. For each
repository other information such as
the name of the repository, location
and browser are provided.

<repository>
<GitRepository><location rdf:resource="https://git-wipus.apache
.org/repos/asf/brooklin.git"/<browser rdf:resource="https://git-wip-
us.apache.org/repos/asf?p=brooklyn.git"/></GitRepository>
</repository>
….................

maintainer List of the users that maintain the
project

<maintainer><foaf:Person><foaf:name>MarioRossi
</foaf:name><foaf:mbox
rdf:resource="mailto:mariorossi@apache.org"/</foaf:Person
</maintainer><maintainer><foaf:Person> <foaf:name>John
Brambilla</foaf:name> <foaf:mbox rdf:resource="mailto:jbramb@
apache.org"/></foaf:Person> </maintainer>
…...........................

4.3.3 jQuery Plugin Registry

jQuery Plugin Registry27 is a JavaScript library for web applications, distributed as free software, under the terms of
the MIT License. The goal is to simplify the selection, manipulation, event handling and animation of DOM elements
in HTML pages, as well as simplify the use of AJAX functionality. jQuery Plugin Registry is a site containing a list of
the available plugins by indexing some projects included in a set of GitHub’s repositories.

27 https://plugins.jquery.com/

D3.1 Software, tools, and repositories for code mining

Page 37

Use of MORPHEMIC

MOPRHEMIC will use the list of the projects provided in HTML format. Specifically, the Web Crawler parses the
list, gets the information and stores them in the Knowledge Base. The information provided is the following:
 	

• Attribution: name of the owner or developer (ex. Jack Moore).
• Entry-title: name of the plugin (ex. ColorBox).
• Description: description of plugin (ex. 'jQuery lightbox and modal window plugin').
• Download link: where the user can download the plugin

(e.g., http://github.com/jackmoore/colorbox/zipball/1.5.14).
• Name: the name a plugin is searched through the tags listed in its home page. This field contains one or more

of these tags.
• Version: release of the plugin (e.g., 1.5.14).
• Date: release date (e.g., Sep 9 2014).
• License: the plugins license (e.g., MIT, GPL3, BSD…).
• Maintainer: name of the maintainer.

 Table 9 includes additional information that could be useful for MORPHEMIC:

D3.1 Software, tools, and repositories for code mining

Page 38

Table 9 All information provided by Jquery plugin registry.

Field Description Example
Block-
tags

List of tags <a class="tag icon-tag"
href="https://plugins.jquery.com/tag/jquery/">jquery

<a class="tag icon-tag"
href="https://plugins.jquery.com/tag/lightbox/">lightbox
<a class="tag icon-tag"

block-
version

List of versions realised
for the plugin

The list reports num.version, release-date, status of the plugin (it an additional
information): <div class="version-info"><p class="version-number">1.5.14</p><p
class="caption">Version</p> </div><div class="release-info"><p
class="date">September 9, 2014</p><p class="caption">Released</p>

download Reference download page <div class="body"><a class="download"
href="http://github.com/jackmoore/colorbox/zipball/1.5.14">

GitHub
activity

Widget GitHub activity
group, fork on GitHub
provide the reference to
the code of the plugin

<aside class="widget GitHub-activity group"><h3 class="widget-title"><span
class="icon-github">GitHub Activity</h3> <div class="info-block
watchers"><div class="number">3533</div><div
class="caption">Watchers</div></div><div class="info-block forks"><div
class="number">931</div><div class="caption">Forks</div>

Author of
the plugin

Who developed the
plugin_name photo, avatar

<aside class="widget author-info"><h3><span class="icon-
user">Author</h3><img
alt=''
src='//secure.gravatar.com/avatar/b03772c64e4609f67e2d1332247f6832?s=80
8;d=mm&r=g'
srcset='https://secure.gravatar.com/avatar/b03772c64e4609f67e2d1332247f6832?s=
160&d=mm&r=g 2x' class='avatar avatar-80 photo' height='80'
width='80' />Jack Moore

widget-
licenses

License Information MIT

widget-
dependen
cies

Possible dependencies of
the plugin

<h3>Dependencies</h3> jquery
>=1.3.2

4.3.4 Repositories associable to the Web Crawler

This section provides an analysis of other source repositories, currently not associated with the latest version of the
Web Crawler, whose features can be potentially interesting for MORPHEMIC.
The analysis took into account several repositories. Some of them, namely:

• Freecode28 is static (since 2014) and it is deprecated.
• Java.net29 as reported in the official home page is closed (most of the projects have been reallocated).

The others, i.e., metaCPAN30, OW231, CRAN32 , CTAN33 and r-forge34 can be associated with MORPHEMIC by
implementing the specific data fetcher to be included in the Web Crawler.
A specific case is CPAN35, which although it has been online since 1995, the search operations for the stored data are
performed through a new web interface called metaCPAN. For this reason, the analysis will be focused on
metaCPAN.
The analysis provided in this section is similar to the previous sections for the associated repositories. Specifically,
once the repository has been demonstrated as active and up to date, it will focus on:

28 http://freshmeat.sourceforge.net/
29 http://www.oracle.com/splash/java.net/index.html
30 https://metacpan.org/
31 https://www.ow2.org/
32 https://cran.r-project.org/
33 https://www.ctan.org/
34 https://r-forge.r-project.org/
35 https://www.cpan.org/

D3.1 Software, tools, and repositories for code mining

Page 39

1. the structure of the contained data and metadata (xml, sql, json file or other),
2. the information provided which can be useful for application profiles.

Table 10 Source code repositories comparison

Name Information Model Status
Freecode N/A Inactive

Cpan Json Inactive
metaCPAN Json Active

CRan
Tar.gz packages (through R
archive project: ftp://cran.r-

project.org/incoming/archive/)
Active

Ctan Hyper Text Language Active
OW2 Hypertext Language Active

r-forge Hypertext Language Active
Java-net N/A Inactive

The parameters used for the analysis are provided in Table 10. Following is the description of the table fields:

• Name: name of the repositories.
• Information Model: the standard format on which the information projects are provided (N/A is reported if the

repositories are inactive).
• Status: if the repositories analysed is active or inactive.

In the next sections, we provide the analysis of the aforementioned active source code repositories candidates.

MetaCPAN

MetaCPAN is a web interface for searching Perl modules, packages and applications on CPAN (acronym of
Comprehensive Perl Archive Network) which is based on the Comprehensive TEX Archive Network model).
MetaCPAN is based on Elastic search. It provides a RESTful interface as well as the option to create complex queries.
The searching of the package can be done by utilising the following fields:

• Author36: the list of the developers. The information is provided in a Json format file, as reported in the
following example:

{

"timed_out" : false,
"took": 3,
"_shards": { "total": 3, "failed": 0, "successful": 3}, “hits": { "hits": [{"_index": "cpan_v1_01",
 HUCKFINN","email":"huckfinn@cpan.org,"website": [],"asciiname" : ""},
"_id": "HUCKFINN" },
 ,,,
"total" : 14039,
"max_score" : 1.0
}

 }

36 https://fastapi.metacpan.org/v1/author/_search

D3.1 Software, tools, and repositories for code mining

Page 40

• Distribution37: name of the language distribution (e.g., Moose Perl distribution) where the module can be
installed. The information is provided in a Json file format as reported in the following example for the Moose
Perl distribution:

{"bugs":

{"rt":
{"open": 47,
 "source": "https://rt.cpan.org/Public/Dist/Display.html?Name=Moose",
 "patched": 0,
 "active": "71",
 "new": 12,
 …...................
 }

 },
"name": "Moose",
 "river": {
 "total": 4544,
 "immediate": 3040,
 "bucket": 4 },
 "external_package" : {
 "Fedora" : "Perl-Moose",
 "Debian" : "Libmoose-Perl"}
}

• File38: It provides a set of information about the CPAN such as download URL, rating, distribution, maturity

(released, suspended,), version of the file, directory of the file, type of file (if deprecated, active) etc. The
information is provided in a Json file format as reported in the following example:

{"cpan_v1_01": {

"mappings":
 {"file":

{"dynamic": "false","properties":
 {
 "version_numified" : {"type": "float"},
 "id": {"type": "string","index": "not_analyzed","ignore_above" :2048},
"status" : { "ignore_above" : 2048,"index" : "not_analyzed",
"type" : "string" },
"directory": {type":"boolean" },
"download_url" : {"type": "string","ignore_above":2048,
"index":"not_analyzed" },

 "date": {“type": "date","format"
:"strict_date_optional_time||epoch_millis"},

 "module": {"type" : "nested", "include_in_root" : true,"dynamic" : "false",
"properties" : {…...........
},…..

"path": { "type":"string", "index": "not_analyzed",….....},
"stat": {"properties": {"size": {"type": "integer"},"gid":{“type" : "long"}, ….
}

 } …...}

• Rating39: rating of the release. It provides also other information such as score, total score, distribution of the
package, name of release etc. The information is provided in a Json file format as reported in the following
example:

37 https://fastapi.metacpan.org/v1/distribution/_search
38 https://fastapi.metacpan.org/v1/file/_search
39 https://fastapi.metacpan.org/v1/rating/_search

D3.1 Software, tools, and repositories for code mining

Page 41

{"cpan_v1_01":
{"mappings":

{"rating":{"dynamic" : "false",
 "properties":{"helpful" …........},

"user": …......}},
"dynamic": "false"},

"release": { "ignore_above" : 2048,"index":"not_analyzed",
…...................

 },
"details": {"properties":

{"documentation": {
 "index": "not_analyzed",
 "type": "string",
 "ignore_above"}}

…..............................
 }

• Release40: name of the release. It also provides other information such as checksum, status, download URL,

name of the release and so on. The information is provided in a Json file format: as reported in the following
example for the Moose Perl extension:

{"deprecated": false,
 "date": "2020-07-21T19:04:06",
 "status": "latest",
 "name": "Moose-2.2013",
 "provides": [

"Class::MOP::Method", "Class::MOP::Method::Accessor", "Class::MOP::Method::Constructor",
"Class::MOP::Method::Generated", "Class::MOP::Method::Inlined",
"Class::MOP::Method::Meta", "Class::MOP::Method::Wrapped", "Class::MOP::Module",
"Class::MOP::Object", "Class::MOP::Overload", "Class::MOP::Package", "Moose",
"Moose::Cookbook", "Moose::Cookbook::Basics::BankAccount_MethodModifiersAndSubclassing",
"Moose::Cookbook::Basics::BinaryTree_AttributeFeatures",
"Moose::Cookbook::Basics::BinaryTree_BuilderAndLazyBuild",
"Moose::Cookbook:Basics::Company_Subtypes",…]

…..
"download_url" : "https://cpan.metacpan.org/authors/id/E/ET/ETHER/Moose-2.2013.tar.gz",
"checksum_sha256": "df74dc78088921178edf72d827017d6c92737c986659f2dadc533ae24675e77c",
…...
"author": "ETHER",
 "dependency”: [{"relationship": "recommends","module":"CPAN::Meta","version": "2.120900","phase":

"test"}, {"version":"0.001","module": "Test::Fatal","relationship" : "requires", "phase" : "test"},
{"phase":"test",…................................

….."res
ources": {"bugtracker" :

{"web": "https://rt.cpan.org/Dist/Display.html?Name=Moose", "mailto": "bug-
Moose@rt.cpan.org"}, repository": { "url" : "git://github.com/moose/Moose.git","type" : "git",
"web":"https://github.com/moose/Moose"}, "homepage":"http://moose.perl.org/"},

 "maturity": "released", “checksum_md5": "8267be7e7fbd9fc99730b78335d120a8",
"abstract": "A postmodern object system for Perl 5",
"tests": {"na" : 0,"unknown": 13,"fail": 1,"pass": 1599}	

The Web Crawler should fetch the information provided by metaCPAN. To get the data, a dedicated data fetcher
should be built.

40 https://fastapi.metacpan.org/v1/release/_search

D3.1 Software, tools, and repositories for code mining

Page 42

CTAN

The Comprehensive TeX Archive Network41 contains all type of TeX material. Most of the software packages are
open source, so they can be downloaded and used (e.g., MikTeX is, one of the most popular distributions of TeX).
CTAN is currently active and maintained.
The CTAN allows access to the information database and retrieves it. Queries can be sent in the form of a RESTful
service (HTTP GET or POST). The response in JSON contains:

• list of Authors42: each author is contained in a JSON object with a set of attributes:

o key (mandatory), a unique id to identify the author;
o given name (optional);
o family name (optional) can be the organizational name;
o female (Boolean, optional, default false) defines the gender of the author;
o died (optional), indicates if the author is alive.

For security reasons, this object does not provide the email of the author. Here is an example of an author object:

{"key":"abrahams","givenname":"Paul W.","familyname":"Abrahams"}

• list of Topics43: each topic is represented by a JSON object with the following attributes

o key (mandatory), a unique id;
o details (mandatory) short description of the topics.

Here an example of the Topic objects:

	{"key":"arabic","details":"documentation in and support for typesetting Arabic"}	

• list of Packages44: each package is represented as a JSON object with the following attributes:

o key (mandatory) the unique id;
o name (mandatory) name of the packages (for example JSON/1.2/1.2);
o details (optional) short description of the content of the package.

Here is an example of the package object:

{"key":"abc2mtex","name":"abc2mtex","caption":"Notate tunes stored in ABC notation"}

The Web Crawler should fetch all information from the list of authors, packages or topics through the use of the
specific Restful API. A dedicated data fetcher should be built to get this information.

OW2

OW231 is an independent no-profit organization dedicated to open source software and infrastructure. OW2 provides a
Marketplace on which approved projects are published. The approval of new projects and their whole lifecycles are
supervised by the OW2 Technology Council. The Marketplace also provides some filters to select the projects
according to maturity level, functionalities, standards and licenses.
The list of projects is provided by the OW2 Project Repositories45. Specifically, this page provides only the name and
the reference link of the project. The wiki of the OW2 provides other information, in particular:

• spaces46: basic information on the project, i.e., name and home page;
• classes47: properties of the project, including branch information, in a standard template;

41 https://www.ctan.org/
42 https://ctan.org/help/json/1.2/authors
43 https://ctan.org/help/json/1.2/topics
44 https://ctan.org/help/json/1.2/packages
45 https://projects.ow2.org/view/ow2/ProjectRepositories
46 https://projects.ow2.org/rest/wikis/projects/spaces
47 https://projects.ow2.org/rest/wikis/projects/classes

D3.1 Software, tools, and repositories for code mining

Page 43

• modifications48: the history project summary, including its major and minor versions.

The information can be provided by the project directories list in XML as reported in the following example49:

<wikis xmlns="http://www.xwiki.org">
<link href="https://projects.ow2.org/rest/wikis/query" rel="http://www.xwiki.org/rel/query"/>
<wiki>
<link href="https://projects.ow2.org/rest/wikis/projects/spaces" rel="http://www.xwiki.org/rel/spaces"/>
<link href="https://projects.ow2.org/rest/wikis/projects/classes" rel="http://www.xwiki.org/rel/classes"/>
<link href="https://projects.ow2.org/rest/wikis/projects/modifications" rel="http://www.xwiki.org/rel/modifications"/>
<id>projects</id>
<name>projects</name>

	
The main information provided for each project are website, functionality, status, license(s), VCS repositories, issue
tracker URL and OW2 submission. As an example, the table below provides the information on the project ADR50:

Table 11 How the metadata information is provided for OW2

Example of OW2 information project
Web site https://projects.ow2.org/view/adr/
Functionality Application platform
Status Incubation
License(s) GNU General Public License v2.0 only
VCS repository(ies) https://gitlab.ow2.org/stsisi/adr-app/adr
Issue tracker URL https://gitlab.ow2.org/stsisi/adr-app/adr/issues
OW2 submission ADR app

The Web Crawler should fetch the information provided by the OW2 Project Repositories. To get the data, a dedicated
data fetcher should be built.

CRAN project

CRAN (Comprehensive R Archive Network) provides modules written in R. CRAN is a network of FTP servers and
web servers that offer the updated version of R, along with documentation and additional modules.
The CRAN package repository contains 16433 packages; the packages are available and sorted by date of publication
or by name32.
The FTP site51 enables to download the software. The information listed below is provided in HTML form or in plain
text:

• description of the project;
• name of the project;
• version of the release project;
• date of publication;
• author of the packages;
• maintainers of the packages (one or more users);
• URL link to the project;
• packages downloads: it is a reference link to download of the packages of the projects.

Figure 18 Figure 18 Example of information provided by cRanshows an example how the information provided.

48 https://projects.ow2.org/rest/wikis/projects/modifications
49 https://projects.ow2.org/rest/wikis/projects/#list
50 https://projects.ow2.org/view/adr/
51 ftp://cran.r-project.org/pub/R/

D3.1 Software, tools, and repositories for code mining

Page 44

Figure 18 Example of information provided by cRan

In order to use CRAN as source repository for MORPHEMIC, it should be evaluated how to extract and how to use
the information provided.
The data fetcher should process the DOM HTML used to provide these metadata.

R-forge

As reported in the R-forge homepage34, RForge provides a collaborative environment for R’s developers. It provides a
SourceForge-like services (such as SVN repository, place for documentation, downloads, mailing lists, bugzilla, wiki
etc.) with additional features specific for the development of R packages, such as check on-commit, nightly builds of
packages, testing on various platforms and full CRAN-like repository access. It is complementary to sites like GitHub
with which it can integrate as R package back-end.
R-Forge is based on FusionForge through which it has easy access to the SVN repository, packages compiled and
checked daily, mailing list, bug tracking, and so on. The projects are grouped by category52 (by default the project is
grouped in the Topics category) as:

• Topics: e.g., Bayesian statistics, bioinformatics.
• Development Status: e.g., for beta, alpha release.
• Environment: e.g., win32, console, another environment.
• Intended Audience: e.g., developers, end users.
• Natural Language: e.g., English, French, Korean.
• Operating System: e.g., BeOS, MacOS, Microsoft.
• License: e.g., Public Domain.
• Programming Language: e.g., C/C++, Java, other.

The standard used to provide all the information contained in an R-Forge project is HTML format. The information
provided is:

• name of the project;
• description of the project;
• project information provided for each category (Environment, Topics, Intended Audience, and so on);
• project member: list of the members of the project (developers, projects manager, testers, and so on);
• project tools: reference link to the project home page.

The following figure shows an example on how the information is grouped, collected and provided for PTauxPC53:

52 https://r-forge.r-project.org/softwaremap/trove_list.php
53 https://r-forge.r-project.org/projects/ptauxpc/

D3.1 Software, tools, and repositories for code mining

Page 45

Figure 19 Example how the information is provided

The Web Crawler should fetch the information provided by R-forge by processing the DOM HTML model (used to
provide these metadata).

4.3.5 Considerations on the available resources to the MORPHEMIC’s Web Crawler

The MORPHEMIC’s Web Crawler retrieves metadata from pre-defined repositories of open source software, such as
forge, metaforge, and list of directories.
The advantage of using pre-defined repositories is to restrict the search scope to a specific region of the web and
specific topics, preserving both computational and communication resources (such as network resources, server
overload, server and router crashes, network and server disruption).
In particular, concerning the three repositories currently used (GitHub, Apache, jQuery Plugin Registry) the possibility
to retrieve the same project on different repositories increases dramatically the quality and the reliability of the
retrieved information. Specifically, it is possible to find different pieces of information on the same fields, but also
different fields on different repositories. In both cases the integrated version provides better quality.
The second case, in which different fields come from different repositories, is very important to provide the Code
Analyser with all the needed information. The following table analyses this aspect by indicating which of the three
considered repositories provides information for each field common and uncommon. In addition, the tables provide
the common fields that are not always mapped for specific project (common fields as release, repository-location,
mailing-list).

D3.1 Software, tools, and repositories for code mining

Page 46

Table 12 Metadata obtained by the preliminary analysis performed by the WebCrawler

Name Description GitHub Apache jQuery
Plugin

Name The name of the project. Yes Yes Yes
Shortdesc The short (8 or 9 words) plain text

description of a project.
It could be It could be No

Description The plain text description of a project, of
2-4 sentences in length.

Yes Yes Yes

Homepage The link to the homepage of the project. Yes Yes Yes
Created The date of the creation of the project. Yes Yes Yes
Source The source of Information. Yes Yes Yes
Revision The revision identifier of a software

release.
Yes Yes

Yes

Old
homepage

If the DNS changed. No Yes

No

Service
endpoint

The URI of a web service endpoint where
software as a service may be accessed.

Yes Yes

Yes

Release The release of the project. Depending on
the event type

Yes

Yes

Repository-
location

The repository link where the source code
can be downloaded.

Depending on
the event type

Yes Yes

Bug
database

The bug tracker for a project. It can be
retrieved

It could be No

Category The category of the project. No GHArchive It could be It could be
Download
page

The web page from which the project
software can be downloaded.

It can be
retrieved

It could be It could be

Download
mirror

The Mirror of software downloads web
page.

Depending on
the project

Yes Yes

Wiki The URL of Wiki for collaborative
discussion of project.

Depending on
the project

Yes Yes

Programming
language

The programming language a project is
implemented in or intended for use with.

No It could be No

OS The operating system that a project is
limited to. Omit this property if the
project is not OS-specific.

No GHArchive It could be No

Language The ISO language code project has been
translated into.

No GHArchive Yes No

License The URI of an RDF description of the
license the software is distributed under.

No GHArchive It could be It could be

Developer
name

The developer of software for the project. Yes Yes Yes

Mailing_list The mailing list home page or email
address.

It depends on
the event type

No It could be

Platform The indicator of software platform (non-
OS specific), e.g. Java, Firefox, ECMA
CLR.

No GHArchive Yes Yes

Audience The description of a target user base. No GHArchive No No
Blog The URI of a blog related to a project. No GHArchive No No

D3.1 Software, tools, and repositories for code mining

Page 47

Taking into account only the three aforementioned repositories, the common fields are:

• Name of the project.
• URI home page of the project.
• Description of the project.
• License.
• Developer name.
• Date of creation of the project.

A set of fields are common to Apache and jQuery Plugin Registry. For GitHub (Section 4.3.1) they can be provided
depending on the specific event associated, in particular PushEvent or PullRequestEvent. The fields are:

• Release version.
• Supported Languages.
• URL of the repositories where the source code can be downloaded.
• Service endpoint.

The integration of these three repositories can potentially provide the minimum information set required by the Code
Analyser.
A further selection could be made by comparing the crawled projects with the MORPHEMIC's use cases and rely on
the analysis techniques that we based on. This comparison should allow us to understand which and if there are
attributes to add to those already selected by the MARKOS crawler.
Another important aspect, towards selecting additional repositories to integrate, concerns the format of the
information, which impacts on the data fetcher. All the analysed repositories (yet implemented in Web Crawler)
provide information in different formats. Simple and structured formats, such as XML and JSON simplify the work of
the data fetcher, while HTML requires more complex implementations. The HTML format is used in some of the
repositories not associated yet. This is another reason for carefully evaluating costs and benefits to develop data
fetchers and to identify the fields needed for the Code Analyser.
This analysis started from what is provided by all the repositories taken into account, both the associated ones and not-
associated ones. The common fields are the following:

• Name of the project.
• URI home page of the project.
• Description of the project.
• Date of creation of the project, plugin module.
• Developer name.
• License.

The Code Analyser is still in the phase of design (Section 3.4) and the information needed to enhance the application
profile needed by MORPHEMIC should still be finalized. This impacts on the selection of the repositories that cannot
be finalized until the respective information needed is supplied.
However, some preliminary considerations can be conducted, for example the license seems not so useful for
providing a deployment model (although it could be useful to select only projects which have a specific license, for
example open-source license) , while the date of release could indirectly help (a selection criterion).
In this case, the analysis starts with what is provided by the repositories. It is also important to start from the
application profile and define if any information not common to all the repositories or not provided at all may be
useful. A help in collecting this information could come from the Code Analyser. For example, supported languages
might be derived this way, although not provided by a repository. Another difficulty is that while a repository has the
information model to provide a field, the value for that field may be missing for a specific project.
In these cases, it is critical to find a way to obtain this information (directly or indirectly) from the data provided by
the associated repositories (and the respective code associated with them). This analysis is not easy, and the successful
result is not guaranteed, but it is very important to perform it very carefully to get as much information as possible and
to define the functionalities that MORPHEMIC will provide.

D3.1 Software, tools, and repositories for code mining

Page 48

5. Review of Code Analysis & Classification

Code mining will allow us to identify a corpus of software project code that is representative for code classes like
High Performance Computing (HPC) code or web code. The different classes are characterised by certain features that
can range from the qualitative features like the programming languages used, structural features reflected in the
application call graph, i.e., the way components and functions invoke other components and functions, and the data
structures in use (e.g., fixed sized arrays or dynamically scaling vectors or lists). Furthermore, all computer software is
about processing data, and so the data processing graph where some components process the data before others will
also reveal the type of application. In order to successfully classify an application code base given to MORPHEMIC,
the following steps are essential:

• Feature definition: This step is necessary in order to identify common traits of various code types. The
features to be collected must be sufficient to differentiate one code class from another code class, and they
must be generic and available in all code classes. Some features can be ordinal, like the programming
language or the used data structures; some features are quantitative like the number of code lines or the
number of functions, classes, or components; some features can be structural and mixed, like the software
patterns identified in the code, and how many times each pattern is encountered. The code corpus is not
available at the time of writing and so it has not been possible to identify the concrete features to use in the
MORPHEMIC code mining at this stage; thus, defining good features is a major challenge for the next period.

• Feature extraction (measurements): After identifying the features to use to differentiate the code classes, it is
necessary to be able to measure the features automatically. There is no point in defining a feature which
cannot be automatically measured. Hence, the initial focus of the work on classification documented in this
report has been to identify tools and mechanisms that can be used to gather information about the code of each
software project in the code base. The result of the feature extraction is a vector of values in the individual
feature dimensions, used to characterize the analysed code, and to differentiate among different code classes.
Section 5.1 discusses the various approaches and interesting tools that can be used for feature extraction, to be
tested and applied on the code corpus in the next phase.

• Classification: The final step is then to look at similarities of the features of the application code to be
deployed by MORPHEMIC with the application code classes identified in the code corpus. Identifying the
code classes in the code corpus can either be done manually and a priori, or automatically by grouping
together code whose feature vectors are similar according to some distance measure. The code to be deployed
can then be said to belong to the class to which its feature vector is most similar according to the same
measure. The exact meaning of distance and similarity in classification is further discussed in Section 5.2
providing the baseline to be applied when the automatic feature extraction has been established.

5.1 Techniques for static code analysis

5.1.1 Static code analysers

Static code analysis [5] normally deals with detecting code issues or vulnerabilities, but also code flow visualisation
and dependency detection. In static analysis, the code under examination in not executed.
There are many tools available54 and it may be worth considering the adoption of some existing static code analysers.
The most promising open source tools are listed below:

• Coccinelle: open source, pattern matching and transformation tool that works only for C/C++55. It can be used
for pattern matching.

• ConQAT: open source, software quality analysis engine developed by Technical University in Munich and
CQSE Company. It provides visualisations, similarity detection, and it supports many software languages. It
has not been supported since 2018, because the company commercialized it as a new product named Team
scale. However, it can be considered as a good starting point for future research.56

54 https://en.wikipedia.org/w/index.php?title=List_of_tools_for_static_code_analysis&oldid=987801100
55 https://coccinelle.gitlabpages.inria.fr/website/download.html
56 https://www.cqse.eu/en/news/blog/conqat-end-of-life

D3.1 Software, tools, and repositories for code mining

Page 49

• Frama-C: open source program analyser for C. It enables the slicing of a program into smaller parts, detects
spare code and computes dominators of statements57.

• Moose: Free and open source platform for software and data analysis. It provides meta-modelling and it is
designed to work on any data. It provides graph visualisations, browsers to search the source code, parsers,
models58.

• PrettyDiff: open source data comparison tool which can compare two pieces of the source code59.
• SonarQube: open source platform for inspection of code quality, but also reports on duplicated code, code

complexity and comments60.
• SourceMeter: open source code analyser tool which performs deep static program analysis. It constructs

abstract semantic graphs and it calculates product metrics61.
• Squale: open source platform for multi-language applications. It provides basic monitoring code data such as

number of lines, classes or the level of maintainability of the code62.
• Yasca: open source program which reports code-quality related metrics63.

5.1.2 Code quality checkers

Code quality analysis and audits have become an essential process for engineering software systems. In particular,
with the increasing use of open source software, security and other code quality parameters have become critical in
developing high quality software. Software quality can be assessed based on two related aspects:

• Software functional quality refers to how well it complies with or conforms to a given design based on the
predefined functional requirements or specifications. It can also be described as a parameter to measure the
degree to which the correct software was produced, as well as to compare a piece of software to competitors
in the marketplace.

• Software structural quality refers to how it meets non-functional requirements, such as reliability, robustness
or maintainability. This type of quality is more diverse with respect to the type of software, users, and the
deployment conditions.

The above aspects are rather high level, identifying the main categories for code quality analysis. From a more
detailed perspective, the code quality can be assessed based on the following indicators:

• Readability: readable, no useless code, brevity/conciseness, formatting/layout, style, indentation, naming
convention.

• Structure: well-structured, modular, cohesion, low coupling, no duplication, decomposition.
• Testability: testable, test coverage, automated tests.
• Dynamic behaviours: robust, good performance, secure.
• Comprehensibility: understandable, clear purpose.
• Correctness: runnable/free of bugs, language choice, functionally correct (meeting business requirements).
• Documentation: documented, commented.
• Maintainability: maintainable, adaptable, reusable, used by others, interoperable, portable.
• Miscellaneous: license, suitable data structure, metrics/measurements.

There have been many projects trying to assess the code quality. In the following, we list the most popular tools for
code quality checking:

1. SonarQube (open-source): As mentioned above (Section 5.1.1), it can inspect code quality. SonarQube is one
of the most popular code quality and security analysis tools. It can check many Correctness aspects of code,
including variable declarations, exception handling, and detecting potential bugs and complex code. It

57 http://frama-c.com/
58 http://moosetechnology.org/
59 https://github.com/prettydiff/prettydiff/
60 https://www.sonarqube.org/
61 https://www.sourcemeter.com/
62 http://www.squale.org/
63 https://www.scovetta.com/yasca/

D3.1 Software, tools, and repositories for code mining

Page 50

supports over 25 programming languages, which is a higher language support level than most tools in the
market.

2. Kritika (closed source): is an online code analysis tool that analyses public and private repositories. It can
analyse the code for coding standard violations, security threats, test coverage, and complexity of the code
(Readability, Structure and Correctness indicators). It is integrable with GitHub to display code quality
statistics. It supports more than 12 programming languages and text files.64

3. CodeSonar (open source): it is a code analysis tool that analyses the code from a computational perspective. It
is able to develop models from your code, which can analyse mainly Correctness, namely potential execution
threats like deadlocks, memory overflow, null pointers, data leaks, and other programmatic errors that might
be difficult to discover. It supports C, C++, C#, Java, Python, and binary code of Intel x86, x64 and ARM65.

4. JArchitect (closed source): it is dedicated to code analysis in Java. It is one of the most exhaustive Java code
analysis tools that analyses mainly Structure and Correctness aspects, namely call hierarchies, memory
consumption, code complexity, functional coupling, block nesting depth, and architectural flaws in the code66.

5. Code Climate (open source): it is an analytics tool that offers two different products: 1) Velocity: it focuses on
improving the functional quality of the code, and in particular on the Structure quality indicator. It identifies
logical flaws and bad design patterns within the code and then provides a visualization of the code quality
analysis and guidelines for solving the discovered issues; 2) Quality: focuses mainly on Readability and
Correctness quality indicators, including formatting, unused imports, variables, and unit test coverage. Code
Climate supports more than ten languages67.

6. Fortify by Micro Focus (closed source): it focuses on analysing security vulnerabilities in the code which are
related to Correctness. It scans known security flaws and any presence of malware or corrupt files. Some of its
features include automated scanning of code supporting almost every programming language, and providing
suggestions for fixing vulnerabilities as the result of analysis68.

7. Codecov (open source): it analyses mainly code Correctness quality and bugs, scans in for security checkers,
and monitors the popular trends across the developer community. The languages supported include: Java, JS,
Node, Python, Go, Ruby, Swift, Dart, Haskell, and others69.

8. Codacy (closed source): it allows automated checking of potential security risks in the code, styles guide
misinterpretations, analyses the code against best code practices, and even supports code coverage to see how
much your tests are covering70. As indicated, this checks mainly the Correctness and Testability quality
aspects.

9. Zoompf (closed source): it is an enterprise-level performance audit platform for integration within the app and
mobile app development workflows. It audits the code to understand the root issues of slow performance and
what can be done to fix them.71 Therefore, Zoompf is focused on Dynamic Behaviours quality indicator.

5.1.3 Graph visualization for matching

Software visualization refers to the visualization of artifacts related to software and its development process.
Generally, three different aspects of a software system can be visualized:

• Structure: refers to the static parts of the code and relations. The structural visualization includes the program
code and data structures, the static call graph, and the organization of the program with respect to its
constituting modules.

• Behaviour: refers to the execution of the program with real and abstract data. The execution can be described
as a sequence of program states. A program state contains both the current code and the data of the program.
Depending on the programming model and the target language, the execution can be visualized at a high level
of abstraction as functions calling other functions, or as objects communicating with other objects.

• Evolution: refers to the adaptation and reconfiguration in a software system and, in particular, emphasizes the
fact that program code may need to change over time to extend the functionality of the system or to remove
software bugs and failures. Software evolution can be visualized from three different aspects: visualizing

64 https://kritika.io/
65 https://www.grammatech.com/products/codesonar
66 https://www.jarchitect.com/
67 https://codeclimate.com/
68 https://www.microfocus.com/
69 https://codecov.io/
70 https://www.codacy.com/
71 https://zoompf.com/

D3.1 Software, tools, and repositories for code mining

Page 51

changes in software metrics, visualizing software archives and histories, and visualizing software structural
changes.

As mentioned above, in MORPHEMIC we mainly focus on static code analysis. The reason for considering code
graph visualization in this section under the subject of static code analysis is that the code graph can be matched
against prototype application patterns (software or architectural or deployment patterns).

Hence, for code visualization, we consider structural visualization which can be textual or graph-based as explained
below:

• Textual Representation: this refers to how to present the program code, which includes printable and non-
printable text (e.g., blank and line feed). The common practice with textual representation is pretty printing.
The goal of pretty printing is to make the nesting of code blocks visible while using a minimal number of lines
for each block.

• Diagrammatic Visualization: diagrams have been used to show the structure of code. In these diagrams
relations between program parts are visually encoded by actions (to represent a code block), edges (to indicate
which function invokes which other function), neighbourhood (i.e., alternative actions that are often placed
next to each other), and containment (a box representing a complex action contains the boxes of its sub-
actions). There exist four general diagrammatic-based representations of code, including:

o Jackson Diagrams: In this model, the data structures involved are first hierarchically decomposed, and
then the program structure should follow this decomposition. The basic elements of Jackson diagrams
are actions, which can be decomposed into sub-actions, as shown in the following Figure:

Figure 20 Jackson Diagram

A sequence A consists of the execution of a sub-action C after a sub-action B. An iteration A consists
of multiple repetitions of B as long as an iteration condition C holds. Finally, an alternative A is either
a sub-action B if a condition C1 holds or a sub-action C if a condition C2 is true.

o Control-Flow Graphs: In these graphs, rectangular represent events, activities, processes, functions, or
statements, whereas diamond nodes show branch conditions and can have several exits. Edges in the
graph depict transitions from one statement to another, i.e., the flow of control as shown in the
following Figure:

Figure 21 Control Flow Graphs

o Nassi–Shneiderman Diagrams: introduced nested rectangular diagrams, also known as structograms.

The primitive diagrams are shown below:

Figure 22 Nassi-Shneiderman Diagrams

o Control-Structure Diagrams: are for keeping the sequential order of the program parts in the source

code. They make the nesting and scope of program constructs more explicit through a horizontal tree.
Vertical lines show the extent of blocks, and vertically stretched oval lines show that of loops.
Diamonds represent conditional statements (as reported in the Figure 23).

D3.1 Software, tools, and repositories for code mining

Page 52

Figure 23 Control-Structure Diagrams

• Visualizing Software Architectures: Visualizations of software architectures mainly illustrate the code
structure at various levels of abstraction. At a high level, the architecture consists of components with
ports/interfaces, and ports are linked through connectors. Besides this, there are many other architecture-
related aspects, such as the global control structure; protocols for communication, synchronization, and data
access; assignment of functionality to design elements; physical distribution; composition of design elements;
scaling and performance; and selection among design alternatives. Most of these aspects have both functional
and non-functional properties.

• The Unified Modeling Language (UML): UML offers a number of different types of diagrams, including use
case diagrams, class and object diagrams, behaviour diagrams (state chart diagrams and activity diagrams),
interaction diagrams (sequence diagrams and collaboration diagrams), implementation diagrams (component
diagrams and deployment diagrams), and model-management diagrams (packages, subsystems, and models).
Α class diagram is perhaps the most common type of diagram in UML which represents the classes, their
interfaces, properties, and their communication with other classes in the software system.

5.1.4 Code analysis techniques

Static analysis techniques are the most popular choice for analysis of software code as they are very simple and fast. In
the following, we discuss some well-known techniques for static code analysis [6] [7].

• Syntactic Pattern Matching. This technique is based on the syntactic analysis of the code by a parser. The
parser takes the source code as input and generates a data structure called abstract syntax tree. One usage of
this technique is bug finding. Using this technique, a set of program constructs that are potentially dangerous
or invalid are defined, and then the target program’s abstract syntax tree is searched for instances of these pre-
defined constructs. Syntactic pattern matching is considered the fastest and easiest technique for static
analysis. However, it may provide little confidence in program correctness resulting in many false alarms.

• Data Flow Analysis. This is a popular static analysis technique in which a graph-based representation of the
code is extracted, called control flow graph, and then dataflow equations for each node of the graph are
written. Then, the equations are repeatedly solved to calculate output from input for each node locally until the
equations stabilize or reach a fixed point. The main dataflow analyses include reaching definitions (i.e., most
recent assignment to a variable), live variable analysis (i.e., removing unused assignments), and expression
analysis (i.e., elimination of redundant arithmetic expressions).

• Abstract Interpretation. It is based on a theory of semantics approximation of a source code based on
monotonic functions over ordered sets. Given a programming language, abstract interpretation consists of
giving several semantics linked by relations of abstraction. A semantics denotes a mathematical description of
the behaviour of the program. The most precise semantics, describing very accurately the actual execution of
the code, are called the concrete semantics. For instance, the concrete semantics of an imperative
programming language may associate to each program the set of execution traces it may produce. Then, more
abstract semantics can be derived, e.g., one may consider only the set of reachable states in the executions.
The goal of this analysis technique is to derive a computable semantic interpretation at some point.

• Constraint-Based Analysis. A constraint-based analysis traverses the code to emit and solve constraints
describing properties of a program. This technique is broken into two steps. First, it produces constraints from
the program text, which describe the information or behaviour desired from the program, called constraint
generation. The second step is dedicated to solving the constraints by computing the desired information,
called constraint resolution. Static information is then extracted from these solutions. One key feature of this
technique is that algorithms used for constraint resolution can be written independently of the target constraint
system.

5.1.5 Software and Patterns

D3.1 Software, tools, and repositories for code mining

Page 53

In software engineering, a design pattern is a general and reusable design solution to the design problem which may
occur frequently during the software design and implementation phases. It should be noted that a design pattern is
basically proposed at a relatively abstract level, meaning that a design pattern is not, e.g., an algorithm, which can
be converted directly into code. Rather, a design pattern is a template for solving a general problem. Design
patterns provide a number of advantages to the software development process, including reusability of software and
design, documentation (allowing developers to recognize the structure and design of the software), as well as
communication and teaching (providing a common language for software designers and developers and improving the
communication between them). For example, in object-oriented programming, design patterns can increase the
reusability of the software libraries and accelerate the development process with proven successful development
patterns.
Mining design pattern instances from the source code can significantly help to understand the code and its structure
and change it over the software lifetime. It can also help in facilitating the discovery of code similarity between source
code. Through an accurate and efficient mining solution, we can extract the used design patterns in the code, and this
will be the basis for inferring similar source codes. However, in typical software programs, several patterns may be
combined or offered as alternatives. For example, the composite, iterator, and visitor constructs are often used in
combination, while the prototype pattern may be used as an alternative to the abstract factory. This, therefore, calls for
mining a sequence of patterns when code similarity is the purpose of mining. It should be noted that another
application of pattern sequence mining is the extraction of strong and weak relationships between the design patterns
used in the code (e.g., in object-oriented source code), which will enable analysers and programmers to determine the
dependency rate of each object, software component, and other parts of the code for parameter passing and modular
programming.	
Sequence alignment is a popular method of discovering the similarity between two sets of data. It can be divided into
two sub-methods: double alignment and multiple alignments. Sequence alignment has been widely used in
bioinformatics for genome sequence analysis and difference identification. Any sequence of DNA (Deoxyribonucleic
acid), ribonucleic acid (RNA), or proteins can be aligned using various bioinformatics algorithms. Sequence mining
is basically one type of data mining to statistically identify the pattern in a set of input data. The pattern values are
generally assumed to be discrete. DNA sequence mining is a method for finding the common subsequence in a set of
sequences.	
Each design pattern has specific properties and characteristics while it might propose to use classes or
components with specific variable names and parameters, but programmers may change such names. A pattern can
be converted to a metric form so that the structural design pattern design of a given source code can be extracted based
on the code variables, parameters, and methods [8]. After the conversion to metric code, the source code is searched
for each programming pattern using the DNA sequence alignment method, which is implemented using dynamic
programming [9]. Then, the DNA sequence method is used to identify the largest match between each pattern and a
specified section of the source code. Each design pattern is compared with each part of the source code, resulting
in sequence alignments of various degrees as output. Then, all the sequence alignments are analysed to find the best
match between the design pattern codes and source codes using DNA sequence alignment. If a given section of the
source code overlaps significantly with a specified design pattern compared to other patterns, then that source
code section is labelled with the matching design pattern.	
Using the above approach for finding code similarity, sequences of software patterns can be the code DNA and
software can be compared based on the similarities of these sequences.

5.1.6 String matching

Text-based approaches [10]–[11] apply string matching techniques, e.g., Longest Common Subsequence (LCS) over
two string sequences of code. They are more efficient when comparing identical code while their accuracy drops with
the existence of syntactical and semantic changes on the compared code. Some, however, were able to bypass the
syntactic differentiation problem, especially its variable renaming instance [11]. Apart from LCS, other string-
matching techniques have been employed as in the case of PMD [12]. Token-based approaches [13]–[14] transform a
string sequence of a code into a set of words to represent a certain program. By adjusting the type of tokens to be
employed, the programs can be abstracted in such a way that textual differences can be normalized. This line of work
is able to tolerate added or deleted statements and bypass formatting and lexical differences but has higher time
complexity than the others. However, approximations or optimizations [15] can be used to reduce this complexity.
We opt out here metrics-based approaches, as these lead to low accuracy results. The result of the feature extraction is
a vector of values in the individual feature dimensions, used to characterize the analysed code, and to differentiate
among different code classes.	
 	

D3.1 Software, tools, and repositories for code mining

Page 54

5.2 Algorithms for classifying the code

Code similarity techniques can be categorized [16] into metrics-based, text-based, token-based, tree-based, graph-
based, and pattern-based. Metrics-based approaches [17] rely on metrics or software measures (e.g., Halstead
complexity measures) but have been found not to be so effective [18] in terms of the other approach categories.
Optimally, the features should be defined such that the feature vector for each class is a standard basis unit vector
with full weight on one feature, and zero weight on all the others features. However, real code will never score only in
one feature dimension. Consider, for instance, code processing big data sets in parallel: This can have strong High-
Performance Computing (HPC) elements in the way it does parallel processing; big data aspects in the data handling;
and show similarities with multimedia code in its stream processing of data. It is therefore necessary to have a
distance metric to decide if the code should be treated as HPC, big data, or multimedia code.

There are many different distance metrics proposed for various purposes, and the choice of a distance metric both
depends on the type of data, and how the code classes are represented [19]. Consider, for instance, the situation where
the code is characterized by a set of words to represent its class, i.e., think of it as a ‘world cloud’ that could be
manually annotated as a result of an evaluation conducted by software developers. Such ordinal data can be compared
using the Jacquard distance measure that assesses the dissimilarity between two sets and

In the cardinal case the feature vector provides information about the score of the code in each direction where it
can be assumed, without any lack of generality, that each feature score is a real number over the unit interval, i.e.

 measuring the strength by which the code has the particular feature of dimension i. Classification must then
be done by comparing the feature vector with a characteristic feature vector for a code class C represented by .
The distance metric used for the classification must then be able to clearly distinguish between the different classes; in
this case, the code having the feature vector belongs to the code class C for which it has the least distance to .

There are situations where it is possible to decide a priori the characteristic feature vector of code belonging to the
code class . The natural choice for a distance metric is then the Euclidean norm,

Alternatively, one may use to Soergel distance using normalized absolute differences in each feature dimension
instead of the squared distances of the Euclidean norm [19],

In most cases, one cannot define theoretically the characteristic feature vector of a code class, and it is necessary to
calculate it statistically from a set of code samples for which the class is already known. The natural choice for the
typical feature vector of this class is then the arithmetic average feature vector for the known elements belonging to
this class, . The Euclidean norm then generalizes to the Mahalanobis distance [19],

where is the sample covariance matrix of the feature vectors for the code samples that are known to be elements of
the class C. Again, the code with feature vector is taken to belong to the class C for which its Mahalanobis distance
is minimum.
Classification based on distance measures is normally strong in the situations where it can be used, although it should
be observed that finding the optimal classification based on distance minimisation is a combinatorial optimisation
problem that is NP-hard [20]. The Mahalanobis distance requires a training set of various code types manually
classified and labelled. Once a new code has been successfully classified, it can be added to the training set and the

D3.1 Software, tools, and repositories for code mining

Page 55

average vector and the covariance matrix of that class can then be updated to include the new code sample. In this
case, the classification will grow more robust to random variation in the feature vectors of the classes over time.
However, it is difficult to add a new class of code when the characteristic vectors are calculated from a training
sample. In this case, it could be that one of the samples already classified as belonging to one of the old classes will
have a shorter distance to the new class, and one would need to return to the original training set to re-calculate the
code class averages and covariances, followed by a subsequent re-classification of all code samples previously
classified.

5.2.1 Tree and Graph based methods
Tree-based code similarity tools [21] rely on transforming code into internal, normalized representations like abstract
syntax trees which are then compared to find similar or common subtrees. Then one can apply different similarity
measures like suffix trees [22], for which optimal algorithms exist [23], or the Jaccard similarity coefficient [24], i.e.

, over these latter sets to infer the similarity between two software programs. Graph-based approaches
[25], [26] cover both the structure and the semantics of the code but also suffer from the problem of increased time
complexity. In fact, most graph matching algorithms are NP-Complete. As such, they also suffer from scalability
problems. Specific types of graphs are usually exploited, such as Program Dependence Graphs (PDGs) [26] and
Control Flow Graphs (CFGs) [25], especially in the context of plagiarism and code detection.
The tree-based and graph-based approaches have better accuracy than the other approach categories. Especially, if, for
example, not enough code documentation and comments are present, text- and token-based approaches will face
serious accuracy problems. It seems that there is a recent trend to encode graph-based structures in an appropriate
format that is amenable to deep learning. This includes graph kernels [27], graph summaries like structural attentions
[28] and graph embeddings [29]. In result, a graph-based classification model [30] can be deduced that is ultrafast to
support the accurate, graph-based classification of open source software components.

5.2.2 Automatic class construction

The above constructions assume that the features obtained from the code projects in the training set have been
manually classified or labelled as belonging to given classes, and this allows the classification methods to use some
kind of distance metric for an unknown code project to identify the largest similarity with one of the known code
classes. However, it cannot be expected that this knowledge is available, in particularly not when code class data is
collected automatically from open source repositories; therefore, it is necessary to investigate other methods that can
automatically identify the code classes from the available data.
The most famous clustering algorithm assuming a priori knowledge of only the number of classes k to be used is the
k-means algorithm [31] aiming to place the feature vectors into k clusters so that the total variance is minimized. The
initial allocation is gradually improved until no further improvement is possible, and this allocation will in general be
a local minimum as the optimisation problem is again proven to be NP-Hard [32]. Furthermore, the converged
solution tends to be sensitive to the choice of the initial allocation [33], and to provide clusters of approximately the
same size. The first issue can be overcome by using a more robust version of the k-means clustering algorithm [34]
[35] that is evaluated to perform well for a wide range of initial clusters [33], and the second issue can be alleviated by
using algorithms that partition the samples around medoids, i.e., real members of the data set instead of the average
value of the clusters [36].
The k-means algorithm is a parametric method based on the mean and the variance of the sample classes. A non-
parametric classification rule was proposed by Fix and Hodges in 1951 known as the k-nearest neighbors
classification [37]: A new sample should be assigned to the class most heavily represented among its k already
classified neighbours. This voting procedure requires a concept of a neighbourhood, and any consistent distance metric
can be used to find the k nearest neighbours. Furthermore, it is possible to weight the votes of the neighbourhood, and
often affine weights are used, i.e., the weights sum to unity. The original approach assumes a weight of assigned
to the k nearest neighbours, and zero to all others; or one may weight the votes of the k nearest neighbours based on
their distance from the new sample according to the distance metric. Alternatively, one may weight the votes to
minimise the risk of assigning the new code sample to the wrong class, and such weights have been found by solving
the classification problem asymptotically [38].

5.2.3 Machine learning methods for code classification

In the context of a huge code repository like GitHub, where most of the developers create and maintain their
repositories, classical code similarity techniques might face performance and scalability problems while they might

D3.1 Software, tools, and repositories for code mining

Page 56

not deliver classification results with a suitable accuracy level. To this end, machine-learning-based techniques have
come into play, which attempt to find the right balance between performance and accuracy. The relevant approaches
can be classified as supervised and unsupervised. Supervised approaches [39]–[40] map existing tags (from a fixed
set) or specific categories (from a fixed set) to software components by utilising a supervised ML technique (e.g., bag-
of-words, linear regression or event their combination). Unsupervised approaches [41], [42] utilise unsupervised ML
techniques like Latent Dirichlet Allocation (LDA) to cluster software projects into potential categories. Please note
that some of the aforementioned approaches are able to produce a hierarchical categorisation of the software projects
[43]. In addition, extra work has been proposed to produce meaningful names for the classes in a (flat or hierarchical)
categorization [44]. In both sub-categories (supervised and unsupervised), the accuracy is quite satisfactory only when
both the source-code and a high-level textual description of the software projects exist. In [45], it seems that this issue
is solved through the use of word embeddings to construct a neural classification architecture and train it over a large
set of informative software projects that come with an adequate high-level textual description. However, that work
still needs some improvement as it produces moderate accuracy results when no description is provided for a software
project and assigns just one category to a software project only from a fixed set of categories.

5.2.4 Future plans

Overall, extensive work has been conducted in the area of software code similarity and classification. It seems that
recent work on the use of topic maps and word embeddings along with deep learning techniques can lead to a better
trade-off between classification accuracy and performance. However, as it was pointed out, such work still needs some
extension in order to become more suitable for our current task at hand. Thus, what we are actually proposing to
perform as research work on software classification is to attempt to extend an existing, promising approach like the
one in [45] with the capability to increase its accuracy in specific situations as well as to produce a hierarchical
classification of software projects where multiple categories per project can be assigned. Further, using the categories
and the code analysis knowledge, we can functionally match and rank software components. However, while two
software components can map to the same categories, this does not mean that they deliver the same functionality. This
just signifies that these components are functionally similar. Thus, another suggestion would be to rely on a second-
level classification or matching, applied after the first one, which would attempt to employ a high-accuracy approach
(i.e., tree- or graph-based) in order to further reduce the matching results only to those which are highly precise. This
would, of course, potentially reduce the recall but it can certainly increase the accuracy of the classification.
Another direction that can be taken is to use graph homomorphism and inexact matching when the software can be
represented as a graph. This can either be a functional ‘call-graph’ or it can be a ‘data and workflow’ graph, like the
Directed Acyclic Graphs (DAGs) often found in High Performance Computing (HPC) applications. It is also possible
to base this on pre-identified software- or architectural patterns, which are also graph representations of software.
We intend to explore both directions of work by extending existing classification approaches, where necessary, as well
as benchmarking the carefully selected approaches according to specific classification scenarios taken from the state-
of-the-art as well as from the use-cases of the MORPHEMIC project. As the result, we envision to design and develop
a Classifier component which advances the state-of-the-art by providing both scalable, ultra-fast, as well as highly
accurate software classification.

6. Conclusion and next steps

This deliverable provides the description and results of the first set of activities on the Application Profiler, performed
during the first period of MORPHEMIC (M1-M12).
One of the more ambitious goals of the project is to provide an automated or semi-automatic application deployment
process, able to select the best deployment configuration, by making use of different environments and application
forms. A preliminary operation to achieve this goal is to identify the profile of the software application to be deployed.
The Application Profiler, introduced in this document, is the component that will perform this task.
One of the basic functionalities of the Application Profiler is code mining, which consists in the research of code, data
and metadata of similar applications to define recurrent profiles and deployment models.
The tools that perform the activity of code mining are part of the architecture of the Application Profiler. Namely, the
Web Crawler, the Knowledge Base and the Code Analyser. At the time of writing this deliverable, the three tools are
in a different deployment status. The Web Crawler has been implemented, the Knowledge Base is partially
implemented and the Code Analyser should be designed. Concerning the Web Crawler, it derives from the EU project
MARKOS, chosen after an analysis of different crawling tools (e.g., OpenHub, Krugle). The reasons for this choice
are the following:

D3.1 Software, tools, and repositories for code mining

Page 57

• open source license;
• reusable, scalable, easily adaptable;
• part of the offered functionalities is the Knowledge Base provided by the Web Crawler; a component that has

already been designated as important in the Application Profiler architecture.

A further step is to associate to the Web Crawler, the appropriate information where open source projects can be
retrieved. Some of them were already associated to the MARKOS’ version (such as GitHub), while others have been
identified and analysed as candidate repositories (for example CPAN, CTAN). In parallel with the implementation of
the remaining modules of MORPHEMIC, the data needed for the definition of application profiles will become clear.
This will be one of the selection factors for new repositories among the current candidates. This will be the next step
of the work on the Web Crawler. Concerning the Knowledge Base, as mentioned before, it is partially implemented as
part of the Web Crawler, specifically the DOAP database.
During the second year of the project, it will become an autonomous RESTful service, completely separated from the
crawling process and accessible by all the other components. In this sense, for example, the Classifier will be able to
exploit the metadata stored in the Knowledge Base to create code classifications; the Camel Designer will leverage
these data to allow users to analyse the functionality of the application components and the open-source components
matching them; the Profile Maintainer will provide users with data from the Knowledge Base to check if new
configurations have been discovered for a specific application.
Code classification is another important research activity performed in this context. In fact, code mining identifies
various types of projects that can be considered as the source for code classes, such as High-Performance Computing
(HPC) code or web code.
 This code should be classified utilising appropriate methods to enable the retrieval of optimal deployment models.
Several characteristics are taken into consideration for the classification:

• qualitative characteristics, such as the programming languages used;
• structural features reflected in the application call graph, i.e., how components and functions invoke other

components and functions;
• the data structures in use, e.g., fixed-size arrays or dynamically scalable vectors or lists.

Other important factors to consider are the data processing software and the data processing graph in which some
components process data before others and which will also reveal the type of application.

The result of the code classification research will be the realization of the Application Profiler component identified as
Classifier.
In the first period of the project, three steps have been identified to successfully classify an application code base:

• feature definition;
• measurements;
• classification.

The feature definition is the first step to identify common features between the various types of code, it should be able
to:

• differentiate among classes;
• be available within all code types.

In general, the process of feature definition takes into account different kinds of features:

• ordinal, such as a programming language or a used data structure;
• quantitative, such as lines of code, number of functions, classes or components;
• functional, such as the software models identified within the code.

A complete feature definition process has not been performed yet. Indeed, the process should be fully defined
according to the characteristics of the MORPHEMIC code mining. The major challenge for the next project period is
to tune the generic process on these characteristics, and, after that, to measure them automatically. The code

D3.1 Software, tools, and repositories for code mining

Page 58

classification will complete the code mining process. This work fully defines the functionality of code mining. Part of
the tools have been already implemented, part of them will be released in the second year of the project. They
represent one of the core functionalities on which the Application Profiler will be built on. The other ones will be
described in the next deliverables of WP3, specifically in the deliverable D3.2 “Automatic source code identification
of deployment modules” (M32).
In this context, an important aspect of future work on application profiling is studying and analysing application
profiling for hardware acceleration. For instance, in the case of accelerators, the main difference between CPU and
GPUs or FPGAs is that the application needs to be translated to a domain-specific language (e.g., CUDA for GPUs
and OpenCL for FPGAs). One research direction will be to understand how the translation of some functions to the
domain specific languages can be done in advance and not at runtime. The idea could be to develop a library of the
most widely used functions (e.g., compression, encryption, etc.) using the domain-specific languages available for the
acceleration platforms in MORPHEMIC. In order to utilize these accelerators, we need to adapt the profiling of the
applications to recognize which of these functions are available as accelerators. In that case, these applications can be
labelled as such and be executed also on accelerators. For example, the profiling of the application must search for
specific keyworks indicating some type of compression. If the function, GZIP () for example is used, then this
application can be labelled as “accelerator” meaning that this function could be offloaded to the accelerators since
there is an available design in GPU/FPGA that accelerates the GZIP function execution.

D3.1 Software, tools, and repositories for code mining

Page 59

7. References

[1] A. Ranganathan, C. Shankar, and R. Campbell, “Application polymorphism for autonomic ubiquitous
computing,” Multiagent Grid Syst., vol. 1, no. 2, pp. 109–129, Jan. 2005, doi: 10.3233/MGS-2005-1205.

[2] H. Liu and H. Motoda, Feature Extraction, Construction and Selection: A Data Mining Perspective. Springer
Science & Business Media, 1998.

[3] S.-H. Chen, Big Data in Computational Social Science and Humanities. Springer, 2018.
[4] Y. Verginadis, I. Patiniotakis, and G. Mentzas, “Metadata Schema for Data-Aware Multi-Cloud Computing,” in

2018 Innovations in Intelligent Systems and Applications (INISTA), Thessaloniki, Jul. 2018, pp. 1–9, doi:
10.1109/INISTA.2018.8466270.

[5] G. Bavota et al., “The market for open source: An intelligent virtual open source marketplace,” in 2014 Software
Evolution Week - IEEE Conference on Software Maintenance, Reengineering, and Reverse Engineering (CSMR-
WCRE), Feb. 2014, pp. 399–402, doi: 10.1109/CSMR-WCRE.2014.6747204.

[6] “Gosain, A., & Sharma, G. (2015). Static analysis: A survey of techniques and tools. In Intelligent Computing
and Applica.” .

[7] “Cesare, S., & Xiang, Y. (2012). Software similarity and classification. Springer Science & Business Media.” .
[8] “Esmaeilpour, M., Naderifar, V., & Shukur, Z. (2014). Design pattern mining using distributed learning

automata and DNA s.” .
[9] “Rouchka, E. C. (2006). Aligning DNA sequences using dynamic programming. XRDS: Crossroads, The ACM

Magazine for Students.” .
[10] “L. Luo, J. Ming, D. Wu, P. Liu, and S. Zhu, “Semantics-based obfuscation-resilient binary code similarity

comparison wit.” .
[11] “C. K. Roy and J. R. Cordy, “NICAD: Accurate Detection of Near-Miss Intentional Clones Using Flexible

Pretty-Printing and.” .
[12] “K. Tate, Sustainable software development: an agile perspective. Upper Saddle River, NJ: Addison-Wesley,

2006.” .
[13] “S. Schleimer, D. S. Wilkerson, and A. Aiken, ‘Winnowing: local algorithms for document fingerprinting,’ in

Proceedings o.” .
[14] “H. Sajnani, V. Saini, J. Svajlenko, C. K. Roy, and C. V. Lopes, ‘SourcererCC: scaling code clone detection to

big-code,.’” .
[15] “L. Jiang, G. Misherghi, Z. Su, and S. Glondu, ‘DECKARD: Scalable and Accurate Tree-Based Detection of

Code Clones,’ in 2.” .
[16] “C. Ragkhitwetsagul, J. Krinke, and D. Clark, ‘A comparison of code similarity analysers,’ Empir. Softw. Eng.,

vol. 23, n.” .
[17] “J. A. W. Faidhi and S. K. Robinson, “An empirical approach for detecting program similarity and plagiarism

within a univ.” .
[18] “Cory Capser and Michael W. Godfrey, ‘Toward a taxonomy of clones in source code: a case study,’

Amsterdam, The Netherlan.” .
[19] Michel Marie Deza and Elena Deza, Encyclopedia of Distances, 4th ed. Berlin, Heidelberg: Springer Berlin /

Heidelberg, Springer Berlin Heidelberg, Springer, 2016.
[20] Daniel Aloise, Amit Deshpande, Pierre Hansen, and Preyas Popat, “NP-hardness of Euclidean sum-of-squares

clustering,” Mach. Learn., vol. 75, no. 2, pp. 245–248, May 2009, doi: 10.1007/s10994-009-5103-0.
[21] “I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier, ‘Clone detection using abstract syntax trees,’ in

Proceedin.” .
[22] Peter Weiner, “Linear pattern matching algorithms,” in Proceedings of the 14th Annual Symposium on Switching

and Automata Theory (SWAT 1973), Conference Location: USA, Oct. 1973, pp. 1–11, doi:
10.1109/SWAT.1973.13.

[23] Martin Farach, “Optimal suffix tree construction with large alphabets,” in Proceedings 38th Annual Symposium
on Foundations of Computer Science, Conference Location: Miami Beach, FL, USA, Oct. 1997, pp. 137–143,
doi: 10.1109/SFCS.1997.646102.

[24] Paul Jaccard, “Distribution de la flore alpine dans le Bassin des Dranses et dans quelques régions voisines,” Bull.
Société Vaudoise Sci. Nat., vol. 37, no. 140, pp. 241–272, 1901, doi: 10.5169/seals-266440.

[25] “D.-K. Chae, J. Ha, S.-W. Kim, B. Kang, and E. G. Im, ‘Software plagiarism detection: a graph-based
approach,’ in Proceed.” .

[26] “K. Chen, P. Liu, and Y. Zhang, “Achieving accuracy and scalability simultaneously in detecting application
clones on And.” .

D3.1 Software, tools, and repositories for code mining

Page 60

[27] “N. M. Kriege, F. D. Johansson, and C. Morris, ‘A survey on graph kernels,’ Appl. Netw. Sci., vol. 5, no. 1, p. 6,
Dec. 2.” .

[28] “J. B. Lee, R. Rossi, and X. Kong, ‘Graph Classification using Structural Attention,’ in Proceedings of the 24th
ACM SIGK.” .

[29] “P. Goyal and E. Ferrara, ‘Graph embedding techniques, applications, and performance: A survey,’ Knowl.-
Based Syst., vol.” .

[30] “C. Cummins, Z. V. Fisches, T. Ben-Nun, T. Hoefler, and H. Leather, “ProGraML: Graph-based Deep Learning
for Program Opti.” .

[31] Stuart P. Lloyd, “Least squares quantization in PCM,” IEEE Trans. Inf. Theory, vol. 28, no. 2, pp. 129–137,
Mar. 1982, doi: 10.1109/TIT.1982.1056489.

[32] M. R. Garey, D. S. Johnson, and Hans S. Witsenhausen, “The complexity of the generalized Lloyd - Max
problem (Corresp.),” IEEE Trans. Inf. Theory, vol. 28, no. 2, pp. 255–256, Mar. 1982, doi:
10.1109/TIT.1982.1056488.

[33] M. Emre Celebi, Hassan A. Kingravi, and Patricio A. Vela, “A comparative study of efficient initialization
methods for the k-means clustering algorithm,” Expert Syst. Appl., vol. 40, no. 1, pp. 200–210, Jan. 2013, doi:
10.1016/j.eswa.2012.07.021.

[34] David Arthur and Sergei Vassilvitskii, “k-means++: the advantages of careful seeding,” in Proceedings of the
eighteenth annual ACM-SIAM symposium on Discrete algorithms, Conference Location: New Orleans, LA,
USA, Jan. 2007, pp. 1027–1035, doi: 10.5555/1283383.1283494.

[35] Bahman Bahmani, Benjamin Moseley, Andrea Vattani, Ravi Kumar, and Sergei Vassilvitskii, “Scalable k-
means++,” Proc. VLDB Endow., vol. 5, no. 7, pp. 622–633, Mar. 2012, doi: 10.14778/2180912.2180915.

[36] Erich Schubert and Peter J. Rousseeuw, “Faster k-Medoids Clustering: Improving the PAM, CLARA, and
CLARANS Algorithms,” in Proceedings of the 12th International Conference on Similarity Search and
Applications (SISAP 2019), Conference Location: Newark, NJ, USA, Oct. 2019, vol. 11807, pp. 171–187, doi:
10.1007/978-3-030-32047-8_16.

[37] Evelyn Fix and J. L. Hodges, Jr., “Discriminatory Analysis. Nonparametric Discrimination: Consistency
Properties,” Int. Stat. Rev., vol. 57, no. 3, pp. 238–247, 1989, doi: 10.2307/1403797.

[38] Richard J. Samworth, “Optimal weighted nearest neighbour classifiers,” Ann. Stat., vol. 40, no. 5, pp. 2733–
2763, Oct. 2012, doi: 10.1214/12-AOS1049.

[39] A. Sharma, F. Thung, P. S. Kochhar, A. Sulistya, and D. Lo, “Cataloging GitHub Repositories,” in Proceedings
of the 21st International Conference on Evaluation and Assessment in Software Engineering - EASE’17,
Karlskrona, Sweden, 2017, pp. 314–319, doi: 10.1145/3084226.3084287.

[40] “Y. Kim, S. Cho, S. Han, and I. You, “A software classification scheme using binary-level characteristics for
efficient s.” .

[41] “K. Tian, M. Revelle, and D. Poshyvanyk, ‘Using Latent Dirichlet Allocation for automatic categorization of
software,’ in.” .

[42] “X. Cai, J. Zhu, B. Shen, and Y. Chen, ‘GRETA: Graph-Based Tag Assignment for GitHub Repositories,’ in
2016 IEEE 40th Ann.” .

[43] “T. Wang, H. Wang, G. Yin, C. X. Ling, X. Li, and P. Zou, “Mining Software Profile across Multiple
Repositories for Hiera.” .

[44] “A. Hindle, N. A. Ernst, M. W. Godfrey, and J. Mylopoulos, “Automated topic naming to support cross-project
analysis of s.” .

[45] “A. LeClair, Z. Eberhart, and C. McMillan, ‘Adapting Neural Text Classification for Improved Software
Categorization,’ in.” .

