

Test strategy

Modelling and Orchestrating heterogeneous
Resources and Polymorphic applications for
Holistic Execution and adaptation of Models
In the Cloud

Executive summary

This document presents a strategy for testing the MORPHEMIC
platform, thus defining and linking the corresponding test acceptance
criteria, while it introduces the test-related products like environments
and prescribe the responsibilities with respect to the quality assurance
tasks in the MORPHEMIC project. The document is intended to be
used as a guideline for performing all activities of the testing process.
Specifically, it should be used by development teams (mainly with
respect to the unit/integration tests and the bugs definition), test teams
(the whole document applies here), architects (bugs and test case
processes mainly apply), use case application users (with respect to
test reporting and bug handling) and managers (regarding the
management of the releases and the testing process).
This report specifies the test strategy, and introduces the various types
of testing, e.g., unit testing, integration testing, functional testing, and
non-functional testing. Another main topic covered concerns the
testing environment configuration, including its respective purposes,
followed by the test process descriptions. For the latter, the document
explains the process of testing, how to use it within the project, the
purpose of the process, and where to find more relevant information
in terms of the process. Furthermore, this document outlines the test-
related products to be delivered within the MORPHEMIC project,
including a Test Plan, Test Cases with scenarios, and a Test Report.
Finally, the report covers communication and responsibilities related
to quality assurance in the project. Altogether, this deliverable
represents a complete and comprehensive guide for the quality
assurance tasks related to testing in the MORPHEMIC project.

H2020-ICT-2018-2020
Leadership in Enabling and Industrial
Technologies: Information and
Communication Technologies

Grant Agreement Number
871643

Duration
1 January 2020 –
31 December 2022

www.morphemic.cloud

Deliverable reference
D4.4

Date
1 January 2020

Responsible partner
7bulls.com

Editor(s)
Anna Wyszomirska

Reviewers
Dimosthenis Kyriazis,
Kyriakos Kritikos

Distribution
Confidential

Availability
www.morphemic.cloud

Author(s)
Anna Wyszomirska

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 871643

D4.4 Test strategy

Page 2

Table of Contents
1.	 Introduction .. 4	

1.1.	 Deliverable Purpose and Objectives .. 4	

1.1.1.	 Purpose ... 4	

1.1.2.	 Objective .. 4	
1.2.	 Assumptions ... 4	

1.3.	 Intended Audience ... 5	
1.4.	 Document Structure ... 5	

2.	 Test strategy ... 5	
2.1.	 Definition of Test Activities .. 6	

2.2.	 Planning of Test Activities .. 7	
2.2.1.	 Development .. 7	

2.2.2.	 Acceptance Test ... 7	
2.3.	 Scope of Testing .. 7	

3.	 Test Environments ... 7	
3.1.	 Development environments (Unit Testing Environment) ... 7	

3.2.	 Integration environments (Smoke Testing Environment) ... 7	

3.3.	 Acceptance environment (Functional Test Environment) ... 8	
3.4.	 Non-Functional Test Environment .. 8	

4.	 Levels of Testing ... 9	
4.1.	 Unit Testing ... 9	

4.1.1.	 Definition ... 9	
4.1.2.	 Objectives .. 9	

4.1.3.	 Tools .. 10	
4.2.	 Smoke Testing ... 10	

4.2.1.	 Definition ... 10	
4.2.2.	 Objectives .. 10	

4.2.3.	 Tools .. 10	
4.3.	 Functional Testing ... 10	

4.3.1.	 Definition ... 10	
4.3.2.	 Objectives .. 11	

4.3.3.	 Tools .. 12	

4.4.	 Regression Testing ... 12	
4.4.1.	 Definition ... 12	

4.4.2.	 Objectives .. 12	
4.4.3.	 Tools .. 12	

4.5.	 Non-Functional Testing ... 12	
4.5.1.	 Definition ... 12	

4.5.2.	 Objectives .. 13	
5.	 Test Process ... 13	

D4.4 Test strategy

Page 3

5.1.	 Test cases and test scenario relations ... 14	
5.2.	 Test acceptance criteria .. 14	

5.2.1.	 For migration to the Integration Environment ... 14	
5.2.2.	 For migration to the Acceptance Environment .. 14	

5.2.3.	 For migration to the Final Acceptance Environment ... 15	
5.3.	 Bugs Tracking .. 15	

5.3.1.	 Bugs Logging Procedure ... 15	
6.	 Testing related products ... 16	

6.1.	 Code Management ... 16	
6.2.	 Test Management ... 16	

6.3.	 Test Strategy .. 16	
6.4.	 Test Plan .. 16	

6.5.	 Test Scenarios .. 16	

6.6.	 Test Summary Report .. 17	
7.	 Communication .. 17	

7.1.	 Test Deliverables ... 17	
7.2.	 Information Sharing ... 17	

7.3.	 RACI Matrix .. 17	
8.	 Summary .. 18	

D4.4 Test strategy

Page 4

1. Introduction

Testing is a key ingredient to the success of implementing and integrating software systems. The goals of the strategy
are summarized as follows:

• deliver a high-quality system;	
• prove that the system is fit for service;	
• minimize the risk of failure in a live environment.	

As such, this document aims to address the test strategy in the MORPHEMIC project. The scope of this document is
described in more details in section 1.1, while the main assumptions as well as the intended audience are supplied in
section 1.2 and section 1.3, respectively. In general, the document analyses the overall testing process, the phases of
testing, the types of testing and all testing activities. Together, these subjects constitute a test strategy that defines the
general approach to quality assurance related to testing in the project.
The main system to support all QA related activities will be Atlassian JIRA1. JIRA has been chosen as a tool for
supporting the project's QA activities after careful evaluation of many alternatives, e.g., Mantis Bug Tracker2. JIRA is
currently the most popular tool for ticket management, development and test process support, is feature rich, and
supports plenty of additional plugins e.g. “My ToDo”, which enable adding to do lists to someone’s issues. Atlassian
has offered JIRA licenses for free for the project. The test team will be created and led by 7bulls. It will mostly
comprise members of 7bulls, but other project participants have been encouraged to participate in the tests.

1.1. Deliverable Purpose and Objectives
1.1.1. Purpose

The purpose of the test strategy is to document the specific test approach to be used for testing in the MORPHEMIC
project. The approach relies on standards, and especially on the ISTQB3 standard methodology for software testing.

1.1.2. Objective

The objective of this deliverable is to define the strategy that will be used to test the individual components and the
integrated MORPHEMIC platform, which includes:

• detailing the activities required for preparing and conducting the various levels of testing; 	
• communicating to all parties the tasks that they need to perform and the schedule to be followed in performing

these tasks, 	
• documenting the test products and reports,	
• explaining the levels of testing that will be followed during the entire project life cycle,	
• defining the roles and responsibilities of all participants involved in the MORPHEMIC’s testing process, 	
• introducing at a high level the issue tracking procedures, and 	
• outlining at a high level how changes in the scope of the project (requirements, non-functional requirements

and technical assumptions) and in the code base/documentation will be managed. 	

Specific test objectives apply for particular types of testing that will be supported in the project, such as Unit and
Smoke testing. Such objectives will be addressed in the respective test plans for these testing types. The project
coordinator, or persons designated by the project coordinator, will be responsible for the final acceptance of the results
of the tests (the test reports). All the acceptance roles are detailed described in RACI Matrix (section 7.3.).

1.2. Assumptions
The project lifecycle includes the following main phases:

• analysis and requirements gathering, 	
• design, 	
• development, 	

1 https://www.atlassian.com/software/jira
2 www.mantisbt.org
3 https://www.istqb.org/

D4.4 Test strategy

Page 5

• acceptance testing and 	
• pilot validation/evaluation. 	

Pilot validation/evaluation is the stage where the development and testing phases are jointly called as implementation.
The fulfilment of the following set of assumptions, which refer to all testing activities conducted throughout the entire
project life cycle, is to assure the highest possible level of quality of the system to be delivered by the project. The
phase-specific assumptions and guidelines will be documented in their respective test plans, whenever appropriate.
In this context, the following assumptions are considered as relevant to the proposed test strategy:

• Regular status meetings will be held between all parties involved in the implementation during the Acceptance
Testing phase as appropriate, 	

• All issues with severity “Highest” and “High” will receive immediate attention from relevant parties involved
in the implementation. 	

1.3. Intended Audience
This document is intended for all participants of the project, and in particularly for:

 	
• Development and architecture teams – this group consists of partners contributing to WP1, WP2, WP3, WP4

and WP5 work packages. The most relevant chapters in this document are chapter 3 ‘Levels of Testing’,
chapter 4 ‘Test Environments’, and chapter 5 ‘Test Process’, as these chapters are mainly related to the
technical side of the project. 	

• Test teams – the whole document is important for this group, which are contributing in WP4.
• Use case partners – the most important chapters are chapter 5 ‘Test Process, chapter 6 ‘Testing related

products’, and chapter 7 ‘Communications’, as these chapters are mainly related to the results of the testing
and the final quality of the project. This team / participant group kind is related to WP6.	

• Management of the project – the most important chapters in this document are chapter 5 ‘Test Process’,
chapter 6 ‘Test related products’, and 7 ‘Communication’, as these chapters are highly related and impact the
management activities of the project, especially concerning the WP7, WP8, and WP9 work packages.	

1.4. Document Structure
This document comprises the following chapters:

• Chapter 2, Test Strategy – this chapter supplies the definition, purpose and content of the Test Strategy. 	
• Chapter 3, Levels of Testing – this chapter analyses all levels of testing that will be used and executed in the

project. 	
• Chapter 4, Test Environments – this chapter provides the description, configuration and purpose of all test

environments in the project. 	
• Chapter 5, Test Process – this chapter explicates the test process that will be faithfully followed in the project. 	
• Chapter 6, Testing related products – this chapter supplies a list and definitions of all testing-related products

in the project. 	
• Chapter 7, Communication – this chapter explains the approach for communication in the QA related area of

the project, the responsibilities of each participant involved in the testing activities and how information
sharing will be performed. To this end, we would like to highlight section 7.3, which supplies a
Responsibility-Acceptance-Consult-Information (RACI) matrix to be used as a guide to all QA related
activities. 	

• Chapter 8, Summary- it is recapping of the all document.

2. Test strategy

A test strategy is a collection of methods, phases, procedures, rules, techniques, tools, documentation and management
processes (described in chapter 5 ‘Test Process’) especially for the test teams. Such a collection enables to specify:

• how the project test scope can be broken down into different stages, 	
• what are the tasks to be carried out, at what stage, and by whom,	
• what deliverables are expected, 	
• how test management and control will be conducted and by whom	
• what tools to be used for each type of testing. 	

D4.4 Test strategy

Page 6

A more detailed description of the most important testing activities during the project, such as test activities
description and planning, is presented below.

2.1. Definition of Test Activities

Project testing is focused on all testing activities within the project, starting from business analysis and test strategy
preparation, through unit testing, system testing, integration testing, and user acceptance testing, till production
deployment.

The main QA-related activities in the project:

• Preparation of the Test Strategy as a base for all QA-related activities in the project - this maps to the analysis
phase,	

• Preparation of a Test Plan and Test Cases for functional and non–functional testing - this maps to the
development phase,	

• Execution of Smoke Tests (a subset of the test cases, whose purpose is to validate if the system is ready for
the Acceptance tests), Functional Tests and Non-functional Tests for each version of the software delivered
per project Release. There could be many versions of software due to the bug fixing process during the
Acceptance Testing phase,	

• After each release, the Summary Test report will be delivered, which will contain the results of all the tests
executed in that release. This report is still within the Acceptance Testing phase.	

Figure 1 Diagram of the QA related activities

D4.4 Test strategy

Page 7

In Figure 1, the testing activities are shown in the rectangles, while arrows between rectangles represent the
dependencies between the respective activities.

2.2. Planning of Test Activities
Test activities occur throughout the implementation phase. Accordingly, throughout the entire project duration, 7bulls
will ensure that a test team works together with the development teams of all participants, resulting in an improvement
of test documentation, test cases and code. This section highlights the most important testing activities within the
overall implementation phase of the project.

2.2.1. Development

During the Development phase, Unit and Integration testing is conducted by the respective development teams. The
7bulls testers will work with developers to assist in the creation and review of the data used for unit and system testing
where applicable. Unit testing is generally the sole responsibility of the development team; the test team only gives
input as and when required. The test team input will be delivered in form of recommendations about what should be
added/improved in unit or integration tests. Moreover, the test team could consult over unit or integration tests
creation. The 7bulls test team will also start the preparation for the execution of the Functional testing. Such a
preparation includes the creation of Test cases, scenarios and test data.

2.2.2. Acceptance Test	

The Acceptance Test phase will verify that the correct functionality has been delivered. Acceptance tests will be
executed by the 7bulls test team, and results will be accepted by the project coordinator or persons designated by him,
it is detailed described in the RACI matrix (section 7.3).

2.3. Scope of Testing

The objectives of testing are:

• Verification of the interaction between system components, 	
• Verification that all requirements as defined in the Analysis and Design phases in the project lifecycle have

been correctly implemented,	
• Identification of and guarantee that bugs are well addressed prior to the deployment of the software.	

3. Test Environments

3.1. Development environments (Unit Testing Environment)	
Unit testing is typically executed in the same environment in which the development takes place. This implies that the
unit tests are run within the development IDE (i.e., on the developer’s workstation), while the web server, application
server and database server can be running either in the development environment or on a remote development
server(s).

3.2. Integration environments (Smoke Testing Environment)	
Smoke Testing is typically executed in the same environment in which the code is built. Typically, this implies that
the smoke tests are executed with a ‘full’ environment, with the web server(s), application server(s) and database
running on remote servers. Smoke tests will be executed by the developer teams. The details of the integration
environment are provided in Table 1.

Table 1 Integration environments

D4.4 Test strategy

Page 8

CPU x86_64/20 cores

RAM 100 GB

HDD 0 GB

SSD 800 GB

Open stack version VM on Aruba Cloud

Virtualization VMware

Host OS Linux 18.04/20.04

Network interfaces 1Gb/s

3.3. Acceptance environment (Functional Test Environment)	
At least one separate test environment will be set up to allow the test team to perform the Functional Testing of the
project platform. The environment is used to verify that the built software satisfies the defined requirements. This is an
architecturally complete environment that uses scaled-down computing components, as the main purpose is to verify
functioning and interoperation, and not validate performance characteristics. The test team will be responsible for the
preparation of this environment, with characteristics as detailed by Table 2. During the project this characteristic
might require modification based on the expected developments in the project.

Table 2 Acceptance environments

CPU x86_64/20 cores

RAM 100 GB

HDD 0 GB

SSD 800 GB

Open stack version VM on Aruba Cloud

Virtualization VMware

Host OS Linux 18.04/20.04

Network interfaces 1Gb/s

3.4. Non-Functional Test Environment	
We propose to create a separate environment for non–functional testing, with key elements to facilitate system
measuring and evaluation. This should allow for efficiency in tuning of the environment that will be taken into
production. Otherwise, an existing environment will be exploited to perform this type of testing. The decision
concerning the creation of an additional environment should be taken at a later stage in the project. The test team will
be responsible for preparing the environment, with a hardware and network configuration as provided by Table 3.

Table 3 Non-Functional environments

CPU x86_64/20 cores

RAM 100 GB

HDD 0 GB

SSD 800 GB

Open stack version VM on Aruba Cloud

D4.4 Test strategy

Page 9

Virtualization VMware

Host OS Linux 18.04/20.04

Network interfaces 1Gb/s

4. Levels of Testing

This section describes various types of tests, which will be executed in the MORPHEMIC project. These test types are
as follows:

1. Unit testing – code level testing prepared and executed by development teams, described below in the “Unit
Testing” section 	

2. Smoke testing – subset of test cases from Functional testing, executed at the beginning of the Acceptance
Tests phase to ensure that the system is stable; it is detailed below in the “Smoke Testing” section 	

3. Functional testing – main Acceptance Tests of the system, prepared and executed by the test team; this is
described below in the “Functional Testing” section 	

4. Regression testing – testing of previous features of the system (not delivered in current release), to ensure that
these features still work properly; this test type is prepared and executed by the test team, while it is detailed
below in the “Regression Testing” section 	

5. Non-functional testing – testing related to non-functional requirements of the system is also main Acceptance
Test type (like performance, security and so on), prepared and executed by the test team; it is described below
in the “Non-Functional Testing” section. 	

Each section below supplies the definition of a particular type of test, its objectives and the tools recommended to
conduct it.

4.1. Unit Testing

4.1.1. Definition

Unit Testing (UT) seeks to test the building blocks of an application, typically in isolation from the application’s other
units and components. A building block is defined as a single class or method of a program, i.e., it is a logical program
unit. Units are generally the atomic elements of an application, while components may be composed of one or more
units. Unit Testing is typically executed by the developers, and involves the testing of individual classes, or small
clusters of classes (a package). Its main purpose is to ensure high quality in the design and implementation of units,
checking that these behave as expected, and identifying bugs prior to integrating these pieces of code into the rest of
the system.
Identifying bugs from the earliest stages of development is recognized as being the most cost-effective method by the
industry, as the cost of bug identification and fixing in later stages is significantly higher. Apart from reducing costs, it
also allows to fix bugs faster, thus giving time benefits. Both are essential aspects of a successful implementation
realized within time and budget constraints. UT also helps to ensure that when code is promoted to the next level of
testing, the code is reliable and testable, i.e., it does not break at the first test instance execution. UT is executed in a
separate development environment, without external connections.

4.1.2. Objectives

Unit Testing aims at verifying:

• branches of a method (in the code unit), 	
• boundary conditions in the method,	
• combinations of state transitions for a particular object when applicable within the program, according to

system specification and technical design,	
• that each individual class meets its responsibilities as defined in its specifications; 	
• correct behaviour or preconditions, post conditions and invariants,	

D4.4 Test strategy

Page 10

• that different modules can call each other successfully, thus performing a kind of high-level inter-module
testing.	

This kind of testing enables obtaining clean and reliable modules that can be promoted to the next level of testing.

4.1.3. Tools

For the purpose of unit testing, the basic JUnit4 components – JUnit for non-UI code, and HttpUnit5 for web-UI code –
should be used. These components are integrated into a continuous integration environment that includes executing
unit tests during the build process. The continuous integration environment contains the deployed system and the
platform for automatic system deployment, based on a given source code repository. Changes (commits) to the source
code repository will trigger a new system’s version deployment on the 7bulls environment (chapter 3). In case of
more complex methods or code units, or when it is impossible to test single methods or code units, the Spock6
framework should be used. The Spock framework is a complete testing framework for unit and integration tests. It
supports tests written in many languages, though mostly used with Java, Groovy and other VM-related languages.

4.2. Smoke Testing

4.2.1. Definition

Smoke testing is a non-exhaustive software testing method, ascertaining that the most crucial functions of a program
work and that the system is stable enough to be deployed on environments other than the development one. A Smoke
test generally consists of a collection of tests that can be applied to a newly created or modified computer program. In
smoke testing, only a few, chosen positive execution paths/processes of the system are tested (they are called Happy
Day's flows). They ensure that the software is in a stable enough condition to be promoted to the test environment(s),
but the goal is not to make a full test with all possible test data and cases. The preparation and execution of Smoke
testing will be the responsibility of the test team.

4.2.2. Objectives

Smoke Testing aims at:

• validating code changes before the changes are checked into the larger product’s official source code
collection, 	

• verifying that the latest changes have not caused any crucial function to fail,	
• verifying that the software is in a stable enough condition to be promoted to the functional test

environment(s). 	

4.2.3. Tools

JUnit or Spock framework tests are executed by the Continuous Integration pipeline implemented on Gitlab CI/CD
during the software build. Gitlab CI/CD is a Continuous Integration software delivered by Gitlab OW2, which is the
code repository for the MORPHEMIC project. The OW2 is a global, independent non-profit dedicated to the
development and promotion of open source software infrastructure technology and middleware, that’s why was
chosen as a repository for this project. The automation of the Smoke tests is very important, because the purpose of
the smoke tests is to quickly verify if the system is ready for the Acceptance tests.

4.3. Functional Testing

4.3.1. Definition

Functional testing validates the features and operational behaviour of software to ensure that they correspond to its
specifications. Functional Testing is an iterative process that can be broken down into System Testing, End-to-End

4 http://junit.org/junit4/
5 http://httpunit.sourceforge.net/
6 http://spockframework.org

D4.4 Test strategy

Page 11

(E2E) Integration Testing and UI Testing, where appropriate, as some elements of the system do not necessarily
require all types of functional testing. For example, if there is no GUI, then UI testing is not applicable. Test results
from the test cycles will be reported back to the development team, allowing them to correct any issues found for a
next functional test cycle. The scope of functional testing will be decided individually for each system module,
process, feature or flow. It will be described in particular test cases. JIRA will be the tool used for problem reporting
and management.

System Testing

The system will be built based on feature and requirement specifications, as well as architecture design, delivered
through the corresponding project reports “D4.1 Architecture of pre-processor and proactive reconfiguration”, “D4.2
Security design and implementation” and “D4.3 Selection, design and implementation of integration layer”. We
assume that during the Acceptance Test phase, all components of the MORPHEMIC system should be tested
separately, according to earlier prepared test cases by the test team. The objective of this testing is to ensure that each
component of the system works properly in isolation and is ready to start E2E Testing.

Integration E2E Testing

During Integration E2E Testing, all software is installed on selected hardware, and connectivity is established with
each subsystem (where possible) and external systems (e.g., Cloud Providers). Once integrated, the system is tested to
ensure that it functions as designed. The objective of Integration E2E Testing is to ensure that all interacting
components are operating correctly together. Integration E2E Testing will test scenarios which contain critical end-to-
end functionality, in conjunction with the system specification document of the project and the architecture to ensure
that each feature/functionality of the system can be successfully executed. The scenarios will use numerous Test Cases
associated with different Use Cases to allow for testing based on predefined functional flow and end-user scenarios.
The functional flow and end-user scenarios cover the following Positive and Negative testing processes:

Positive process testing:

• Main Flow: Standard flow for each interaction process (feature/functionality) of the MORPHEMIC system,
across all components involved in the tested functionality. 	

• Alternate Flow: Variations on the main standard flow for each interaction process 	

Negative process testing:

• Exception Flow: This testing is to ensure all validation implemented within the system is successfully
working, by submitting invalid data inputs to trigger certain validation rules.	

4.3.2. Objectives	

System Testing aims at verifying that:

• each component is implemented according to design, 	
• each component tested in isolation meets all requirements specified in the system specification.	

Integration E2E Testing aims at verifying:
• that the software is correctly installed (database scripts, the docker image(s) and other components are

properly created and running) and connectivity is successfully established between each subsystem and the
external systems, 	

• system features/functionality based on predefined functional flow and end-user scenarios, 	
• that data can be received and transmitted to/from the other subsystems, 	
• real-time processing between the subsystems, if there will be a requirement to have real-time interaction

between particular components, 	
• audit stamps, error messages, and files exchanged between the subsystems, 	
• bug reports, which will be available in JIRA, to ensure errors are identified.	

	
Based on the aforementioned goals, all listed testing types (i.e., system, E2E integration and UI) will be applied since

MORPHEMIC includes all of this type of functionality.

D4.4 Test strategy

Page 12

4.3.3. Tools	

Functional Testing will be supported using Atlassian JIRA (global test management, manual test cases, bugs handling,
change management and reporting). Automated functional tests will be prepared using Spock framework or Soap UI7.
The Soap UI is a feature-rich software for SOAP/REST interface/method testing. It is designed to test backend
systems which expose APIs and due to this it is considered a suitable choice for MORPHEMIC system tests. The right
tool will be chosen by the test team during the test plan preparation, based on testing needs per particular feature. The
respective choice will be documented in the planned project deliverable “D4.5 Test cases and testing”.

4.4. Regression Testing	

4.4.1. Definition	

Regression Testing is defined as the selective retesting of a software system that has been modified, in order to ensure
that:

• every bug has been resolved and fixed, 	
• no other previously working functions have failed as a result of the reparations, and 	
• newly added features have not created problems to previous versions of the software 	

Also referred to as verification testing, Regression Testing is initiated after a programmer has attempted to fix a
recognized problem or has added source code to a program that may have inadvertently introduced errors. It is a
quality control measure to ensure that the newly modified code still complies with its specified requirements and that
unmodified code has not been affected by the code modifications performed.

4.4.2. Objectives	

Regression Testing aims at:

• Verifying that previously working features still work after a software change, whether that change is a bug fix,
an enhancement or a new feature.	

4.4.3. Tools	

As much as possible, regression test cases will be automated using automation test tools. Non-automated test cases
will be executed manually, in the same manner as manual functional tests. Automated regression tests will be prepared
using the Spock framework8 or Soap UI9. The selection of one of these two tools will be done by the test team,
depending on the test case and its respective needs.

4.5. Non-Functional Testing

4.5.1. Definition	

Non-functional testing includes various types of tests, such as performance tests, stress tests, failover tests and security
tests. Each type of test could be applicable based on the project’s needs, while the final decision about which test types
to use would be taken before starting the Acceptance Testing phase.
During Performance Testing, pre-defined requirements on response time and other non-functional attributes are
measured and evaluated. This also includes exposing the system to varying workloads to measure and assess the
performance and ability of the system to continue to function properly under these different workloads.

7 www.soapui.org
8 Better Code Hub
9 Sonarqube

D4.4 Test strategy

Page 13

Stress testing aims at finding errors due to insufficient resources or resource contention. Low memory or disk space
may reveal bugs in the system that are not apparent under normal conditions. Other bugs might result from the
competition for shared resources, like database locks or network bandwidth.
Failover and Recovery Testing objectives map to checking if the system works properly after (even unexpected)
restart, failure of one or more of its components, or other non-typical situations. We will especially focus on checking
the stability of the system after unexpected situations arise, via this type of testing.
The last element of Non-functional testing is security testing. Security testing is a process that intends to find flaws in
the security mechanisms of a system that protect data and maintain functionality as intended. During security testing
we will focus on testing and verifying the following areas of the system to be delivered:

• security of the communication between components	
• authorization at the API/system methods level 	
• user authentication and authorization	
• checking if the system is affected by any attack related to stack/buffer overflow (sql injection, script injection

and so on)	
• checking that the system is not vulnerable via basic penetration tests, like IP/TCP spoofing, session hijacking,

DNS spoofing, and SSL man-in-the-middle attacks. The detailed scope of this type of testing will be prepared
based on the requirements and needs in the project.	

4.5.2. Objectives	

Non-Functional Testing aims at:

• verifying the system’s behaviour and performance under normal anticipated workload,	
• verifying the system’s behaviour under varying workload conditions,	
• identifying areas where code and database optimization can be tuned for efficiency,	
• verifying the system’s behaviour under stress conditions, e.g., limited resources,	
• verifying security of the system,	
• verifying system stability under expected and unexpected situations.

5. Test Process	

The test process starts at the very beginning of the project life cycle. During the Analysis and Design phase, the test
team will start producing a Test Plan, as this should be prepared as early as possible. The Test Plan should also
contain dependencies between Test Cases (if needed), which specify which Test Cases should be executed before
others. This process will have three main benefits:

• It will allow the test team to understand the system to be developed, 	
• It will serve as a review of the system specifications and requirements,	
• It will facilitate solving raised issues, as all parties (the test team and development teams) have the same base

data (test data - input parameters for test cases, necessary to execute test cases and to reproduce bugs if
occurring during test case execution).	

Once the Analysis and Design phase is finished, the Implementation phase will start. The development teams start
developing the application, and at the same time, the test team completes the Test Plan. The Test Plan is then reviewed
by the relevant parties (development teams, architects, analysts and the test team) and verification takes place to
ensure that all aspects of the Test Cycle have been fully covered. After Test Plan finalization, the test scenarios are
designed and developed within JIRA Test Cases in the following manner:

• Test cases for each User Story will be created in a separate JIRA test project, 	
• The test cases are developed and stored in the test cases tab, 	
• Test cases are grouped into test scenarios in JIRA,	
• Progress and statistics will be based on JIRA reporting, 	
• Each test case will be given a priority according to the importance of the tested feature related/linked with it.

Prioritization will be based on the priority of the corresponding requirements, if they are available. In case of
lack of priority, the following default rules for test case prioritization will be used:	

o High – A feature tested by the test case is critical for proper system functioning and must successfully
pass all tests in all possible cases, including corner and extreme cases. 	

D4.4 Test strategy

Page 14

o Medium – A feature tested by the test case is important for proper system functioning and must
successfully pass all tests in typical situations. In corner and extreme situations, improper behaviour is
acceptable. 	

o Low – A feature tested by the test case is not critical for proper system functioning.	
The default prioritization of test cases will be done by the Test Team Leader.
This chapter contains description of the steps in the test process, which include relations between test scenarios and
test cases, acceptance criteria in every test environment stage and bugs tracking.

5.1. Test cases and test scenario relations
This section supplies the definitions of test case and test scenario and explains the relations between each other. A test
scenario covers one execution flow of a use case, so for each use case there will be many test scenarios with
alternative ways to handle the flow, e.g., positive scenarios, negative validations, technical error handling, and
business error handling. On the other hand, a test case is a single, complete activity within a test scenario, which
relates to one complete function/feature that needs to be tested.
The following relations between test scenarios and test cases exist:

• Each test scenario consists of one or many test cases, 	
• Test cases can be reusable as each test case could be used by many test scenarios, 	
• Each test scenario has its own parameters for execution while each test case defines the needed parameters

and determines which ones should be inherited from the test scenario and which ones are defined for this test
case only,	

• Each test scenario and test case define the prerequisites needed for their execution.

5.2. Test acceptance criteria

This chapter contains those acceptance criteria which, when fulfilled, indicate the ability to promote the given version
of a system to the next environment and stage of testing.

5.2.1. For migration to the Integration Environment
To promote system code to the Integration Environment, the criteria listed below should be fulfilled:

• Utilize Continuous Integration practice with the use of the automation server. Software builds will be
performed automatically from the master branch after each commit.	

• A code review of a pull request should be done by at least one person – to discuss the organization of the code
review process, especially code review by different participants. The responsibility for code review is on the
developer. 	

• All ten rules of Better Code Hub10 should be fulfilled and marked as green – This item should be discussed
and confirmed with other participants. 	

• Preparation and execution of unit tests for delivered code. Minimum coverage of unit tests should be 40%,
counted using prepared Sonarqube11 rules – the responsibility is on the developer. The value of minimum
coverage is based on 7bulls’ experience in commercial software development. 	

The test team has the right to review the unit testing and suggest improvements or adding more tests to the
development teams.

5.2.2. For migration to the Acceptance Environment

To promote the system code to the Acceptance Environment, the criteria listed below should be fulfilled:

• The system should work properly; all components should properly interoperate – the responsibility is on the
architect and developers which deliver the code for release. 	

• All integration tests should be prepared and executed. Minimum combining coverage of unit and integration
tests should be 50%, counted using prepared Sonarqube12 rules. The responsibility is on the developers. 	

10 https://bettercodehub.com
11 https://www.sonarqube.org
12 https://www.sonarqube.org

D4.4 Test strategy

Page 15

• Smoke tests should be executed with positive effect – the execution of the tests is in the responsibility of the
test team, while fixing discovered bugs is in the responsibility of the developers. 	

The test team might review the integration testing and suggest improvements or adding more tests to the development
teams.

5.2.3. For migration to the Final Acceptance Environment

To promote the system code to the Final Acceptance Environment, all the criteria listed below should be fulfilled.
Some criteria will be checked via automatic verification, while others need a manual verification of their fulfilment.

• All test cases related to the framework with priority critical and major should be passed. 	
• All non-functional requirements related to performance and security should be fulfilled and tested positively. 	
• All test cases related to the core functional flow of the platform should be passed. 	
• The optimization of the deployment architecture should be verified in all relevant test scenarios. 	
• Evaluation and validation of delivered features by use case partners. 	
• The use case applications should be installed and tested; all major features of these applications should work

properly. 	

5.3. Bugs Tracking
The purpose of this section is to describe the Bugs Tracking Process. During the development and testing of the
system, bugs can be found. A bug is a defect in a component or system that can cause the component or system to not
perform its required function(s). A defect that will be encountered during runtime, can cause failure of the component
or system. It constitutes a deviation of the component or system from its expected delivery, service or result. Bugs are
reported in order to enable the system to subsequently work as planned and expected, when they are appropriately
corrected. Bugs are corrected by developers and checked by testers.

5.3.1. Bugs Logging Procedure

Test activities comprise of executing test scripts and comparing actual with expected results. Whenever an
inconsistency is detected between actual and expected results, this inconsistency should be logged in a bug report for
further follow up. The originator records his/her name and gives a description of the inconsistency. Sufficient details
(covering the process followed and configuration information) should be provided for investigating the
(inconsistency) item to be able to recreate the process used when the inconsistency was first discovered. The logging
is performed directly in JIRA, which is the only official channel for inconsistency reporting for this project. The
reason to use only JIRA is to avoid blurry communication via mails/chats or other means, but rather adhere to one
unique source of evidence.
Please note that an inconsistency is the general term used for anything that requires further investigation. Once an
inconsistency has been validated to be a proper fault in the software, the term bug is used. The priority of the bug is set
by the originator of the bug. The priority should only be changed by the originator, test coordinator or technical
manager of the project. In particular, it is not allowed for the developer, assigned to fix the bug, to change its priority.

Overview

The JIRA bug-tracking module will be implemented, and the test team will enter any inconsistencies found (either
related to the Project code or any documentation) into JIRA. All inconsistencies will be logged in JIRA; even minor or
intermittent bugs that cannot be reproduced can still provide valuable information. Bug reports should contain enough
details as to how the bug was detected so that an attempt can be made to reproduce the problem. A high level of detail
will assist with the replication of the problem, and the respective resolution of the bug.
After bugs/issues are resolved, and the (bug) resolution is released via the build cycle, testing will be conducted to
verify that the bug resolution is successful and to ensure that the system functions correctly. The testing of the bugs
will be based usually on already created test cases; only when there will be a need to create dedicated test cases for a
particular bug, new test cases will be created.
Not all errors or bugs require a respective code fix by the software development team. Some may be caused by errors
in configuring the test software to match the development or production environment. Some bugs may be resolved by
documentation corrections. Others might be deferred to future releases of the software, depending on the

D4.4 Test strategy

Page 16

severity/importance of the bug. There are yet other bugs that may be rejected by the development team (of course, by
supplying a suitable rationale for this) if it deems them inappropriate to be called as bugs (e.g. not-reproducible error,
which developer could not repeat and check what actually does not work).

Bug analysis and resolution

During its entire lifecycle, a bug will change states depending on the progress being made in resolving the respective
issue. Note that for the project, the number of different states is kept to a minimum, in order to keep it as
straightforward as possible. The combination of status and assignee, together with an extra note when required,
should provide sufficient information to do a proper follow-up on a bug.
Additionally, it should be indicated that independently of its state, an inconsistency shall remain indefinitely in the
bugs database in JIRA. Please note that it is essential that all circumstances, steps taken and events prior to the
inconsistency occurrence, are logged as detailed as possible from the outset. When all this information is complete and
available, the steps will be carefully followed. In case an inconsistency is still not reproducible, all system logging and
audits could be examined. At this point, if there is no indication as to what the problem might have been, the
inconsistency will be returned to its originator with the status Open. It is then the responsibility of the originator to
carefully monitor and repeat the steps to establish a well-documented sequence. If this is successful, the inconsistency
will follow the normal flow as defined above. Otherwise, if the bug is still irreproducible after a subsequent release,
the bug will be deemed Rejected. This procedure will minimize effort on fruitless “needle in a haystack” type of
investigations for all parties involved.

6. Testing related products

The purpose of this chapter is to summarize the project’s products related to the testing process and quality assurance.

6.1. Code Management
All project source code is maintained in a GIT repository on Gitlab OW2.

6.2. Test Management
JIRA will be used as a test management and control tool to keep track of all test cases and scenarios, their execution,
and possible modifications to test cases, in order to enable tracking of what functionalities have been tested against
what software version.

6.3. Test Strategy
This document, the “D4.4 Test Strategy” is the document that defines the standard test approach for project (system)
implementation. This document defines test deliverables, documentation and procedures.

6.4. Test Plan
The document that explains how testing of a given level will occur and what will be tested. The test plan is written to
identify, document and communicate the test cases, resources, objectives, activities and goals that are required and
will be achieved by implementing the plan. The test team will provide this document to cover the functional and non-
functional test phase; this test plan will be an internal deliverable per iteration.

6.5. Test Scenarios
The document (“D4.5 Test cases and testing”) that outlines the different steps to be performed when testing a function
or Test Case, that allows validating actual results against expected results. Each function (or Test Case) will comprise
several smaller test steps, which can be combined into one or more larger scenarios. Each level of testing will have its
own designated test scenarios, where some of these scenarios may be derived from an earlier level of testing. For
instance, Integration Testing test scenarios may include a subset of the UI Testing test scenarios; and the rest of the
test scenarios will be dedicated to the respective type of testing (i.e., integration testing). Therefore, one test case could

D4.4 Test strategy

Page 17

be used for various types of testing. For example, the same test case could be used for both UI testing and Integration
testing. The test scenarios are managed and stored within JIRA.

6.6. Test Summary Report
A document that will summarize the test results of both the Functional Testing and Non-Functional Testing at the end
of every release of the MORPHEMIC system. This report will detail the tests that have been executed, any
outstanding bugs identified, and possible workarounds suggested for existing bugs. After executing Non-Functional
Testing, which usually succeeds Functional Testing, the Test Summary Report will be extended to add the respective
testing results for this testing type.

7. Communication

7.1. Test Deliverables
A first level of communication will be attained by means of the test deliverables defined in this document. These
documents are intended to give the project team members a better understanding of the processes and procedures in
place, while others, like Test Cases and Testing, created during the project's life cycle, will inform these members of
the progress being made in the testing of the system. The Test Summary Reports will be shared with all participants.
Furthermore, other testing related deliverables (“D4.6 Test report for prototype release” and “D4.7 Test report for final
release”) will be available for all participants. The rules for sharing testing deliverables are described in the RACI
matrix (section 7.3). During the entire lifecycle of the project, the bug tracking tool (i.e., JIRA) will also be a useful
source of communication between the test and development teams. This also allows the project management to extract
reports from this tool, thus verifying the progress of the project.

7.2. Information Sharing
A Confluence Website13 (a content collaboration tool) will be set up as a central source of information. All
participants are welcome to contribute to the body of knowledge. This is an ‘organic’ source of information which
evolves over the project cycle. It includes:

• Set-up help – a manual explaining how to setup an environment for the system delivered by the project	
• Installation help – a manual on how to install the system delivered by the project	
• Best practices – best practices in various areas of the project	
• Patterns – patterns (useful for development, devops, testing and so on) used in the project	
• Current environment details – detailed description of each environment	
• Knowledge Base – contains useful information (e.g., definitions, articles on how to handle common problems

and so on) for the project	
• Links to all useful resources – links to external web pages related to the project.	

7.3. RACI Matrix	
RACI matrix14 is a way of defining responsibilities, acceptance, consulting and information flows in a project. For
each task or product, respective parties are defined in the matrix with the following roles/responsibilities:

• R – Responsible: the person or team responsible for executing a task or delivering the respective product 	
• A – Accepting: the person who accepts the product or results of the task 	
• C – Consult: the person or team who could be consulted and supports the execution of the task, while it might

be involved in the delivery of the results of the task, under the supervision of the person/team responsible for
the actual delivery. 	

• I – Inform: the person or team who should be informed about the task results and activities. 	
All roles are defined in accordance with the general project management of MORPHEMIC. The main roles involved
in quality assurance related activities are as follows:

• Project Coordinator – the person responsible for coordinating the execution of actions and tasks between
participants of the project. 	

13 https://confluence.atlassian.com/
14 https://www.projectsmart.co.uk/raci-matrix.php

D4.4 Test strategy

Page 18

• Chief Architect – the person responsible for the overall architecture of the software delivered within the
project. 	

• Development team leaders – the persons who are the leaders of the related development work packages in the
project	

• Test team leader is responsible for all activities related to quality assurance in the project.
The test team will be created and led by 7bulls. It will mostly comprise members of 7bulls, but other project
participants are encouraged to participate in the tests. Table 1 RACI Matrix shows the RACI matrix for all high-level
QA-related tasks in the project.

Table 1 RACI Matrix

Id Task name Description R A C I

1 Test strategy
preparation

Preparation of the test strategy –
see chapter 6.4 Test Strategy

Anna
Wyszomirska-
member of test
team

Project
Coordinator

All participants All participants

2 Unit test Preparation of unit tests for
delivered software – see chapter
3.1 Unit Testing

Dev team
leaders

Katarzyna
Materka

Test team None

3 Integration test Preparation of integration tests
for delivered software – see
section in chapter 3.3 on
Integration Testing

Dev team
leaders

Katarzyna
Materka – test
team leader

Test team &
chief architect

None

4 Functional tests Preparation and execution of
functional tests – see chapter 3.3
Functional Testing

Anna
Wyszomirska

Project
Coordinator

Test team All participants

5 Non-Functional tests Preparation and execution of
non-functional tests – see
chapter 3.5 Non-Functional
Testing

Anna
Wyszomirska

Project
Coordinator

Test team All participants

6 Test plan and test
cases

Test plan and test cases
preparation for each release –
see chapter 6

Anna
Wyszomirska

Chief architect All participants All participants

7 Test automation Preparation of automated
functional test cases – see Tools
sections in chapter 3.1 and
chapter 3.3

Anna
Wyszomirska

Chief architect None None

8 Test report Preparation of the report after
each release. See chapter 6.7
“Test Summary Report”

Anna
Wyszomirska

Project
Coordinator

All participants All participants

9 Test related meetings Organization of test related
meetings. See chapter 7
Communication

Anna
Wyszomirska

None Test & dev
teams

All participants

8. Summary

This “Test Strategy” deliverable contains the strategy for testing in the project. In the current report, the following
information has been covered:

• Test strategy definition 	
• The description and definition of a test strategy with a brief presentation of the most important elements. 	
• The levels of testing in the project, starting from unit and integration tests during development phase, through

smoke tests, till functional and non-functional testing during the acceptance phase. 	

D4.4 Test strategy

Page 19

• Environments that will be used in this project for testing purposes, including Development Tests, Integration
Tests and Acceptance Tests environments. The Development Tests environment will be used by developers,
the Integration Tests environment will be used by both developers and the test team, and the Acceptance Tests
environment will be used by the test team only. 	

• The description and purpose of the test process as well as the presentation and analysis of all process
elements. 	

• The test related products delivered within the project along with their purpose. 	
• Communication and responsibilities.	

In the last chapter the communication in the project is described. The tools used for communication are listed
with a brief explanation on how to use them. Also, the RACI matrix is provided for the test related activities.
For each activity, the responsible person or role is assigned, also the persons and roles which could be
consulted, should be informed, and should accept particular task or product are presented.	

